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Markovian modeling of classical thermal noise in two inductively coupled wire loops
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Continuous Markov process theory is used to model classical thermal noise in two wire loops of resistances
R1 andR2, self-inductancesL1 andL2, and absolute temperatureT, which are coupled through their mutual
inductanceM . It is shown that even though the currentsI 1(t) andI 2(t) in the two loops become progressively
noisier asM increases from 0 toward its upper bound (L1L2)

1/2, the fluctuation-dissipation, Nyquist, and
conductance formulas all remain unchanged. But changes do occur in the spectral density functions of the
currentsI i(t). Exact formulas for those functions are developed, and two special cases are examined in detail.
~i! In the identical loop case~R15R25R and L15L25L!, theM50 ‘‘knee’’ at frequencyR/2pL in the
spectral density function ofI i(t), below which that function has slope 0 and above which it has slope22, is
found to split whenM.0 into two knees at frequenciesR/[2p(L6M )]. The noise remains white, but
surprisingly slightly suppressed, at frequencies belowR/[2p(L1M )], and it remains 1/f 2 at frequencies
aboveR/[2p(L2M )]. In between the two knee frequencies a rough ‘‘1/f -type’’ noise behavior is exhibited.
The sum and difference currentsI6(t)[I 1(t)6I 2(t) are found to behave like thermal currents in two un-
coupled loops with resistancesR, self-inductances (L6M ), and temperatures 2T. In the limit M→L, I1(t)
approaches the thermal current in a loop of resistance1

2R and self-inductanceL at temperatureT, while I2(t)
approaches (4kT/R)1/2 times Gaussian white noise.~ii ! In the weakly coupled highly dissimilar loop case
~R1!R2 , L15L25L, andM!L!, I 2(t) is found, to a first approximation, not to be affected by the presence
of loop 1. But the spectral density function ofI 1(t) is found to be enhanced for frequenciesn!R2/2pL by the
approximate factor~11an2!, wherea5(2pM )2/R1R2 . A concomitant enhancement, by an approximate factor
of ~112M2R2/L

2R1!
1/2, is found in the high-frequency amplitude noise ofI 1(t). An algorithm for numerically

simulatingI 1(t) andI 2(t) that is exact for all parameter values is presented, and simulation results that clarify
and corroborate the theoretical findings are exhibited.@S1063-651X~97!15103-0#

PACS number~s!: 05.40.1j, 02.50.Ga, 02.70.Lq, 72.70.1m
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I. INTRODUCTION

In this paper we seek to describe theoretically the effe
of classical thermal noise in two rigid wire loops of res
tancesR1 andR2, self-inductancesL1 and L2, and mutual
inductanceM , the two loops being in thermal equilibrium a
absolute temperatureT.

The practical motivation for this investigation stems fro
the well-known fact that thermal noise ultimately impos
limitations on the performance abilities of very sensiti
electronic devices that are required to operate under no
perconducting conditions. For example, the components
very densely integrated microcircuit are necessarily situa
closely together, and their consequent high inductive c
pling affords a broad avenue for the propagation of amb
thermal noise. The double-loop problem considered here
fers a simple prototype for studying the effects of inductive
coupled thermal noise.

A less obvious practical system whose thermal noise s
sitivity might be illuminated by an investigation of th
double-loop problem is a medical magnetic resonance im
ing ~MRI! machine. The detector coils of a medical MR
machine are typically placed very close to the human b
being examined, and the random thermal motions of na
rally occurring solvated ions in the human body, mainly N1

*FAX: ~619! 939-1409. Electronic address:
dtg@rattler. chinalake.navy.mil
551063-651X/97/55~3!/2588~18!/$10.00
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and Cl2, will generate random electromagnetic signals th
will augment the ambient thermal noise in the detector co
thereby degrading their performance. The ideal prototype
this problem would of course be a singleR-L loop placed
over a beaker of salt water, and that problem is curren
under study by this writer. But it turns out that a crude s
rogate for the beaker of salt water is a secondR-L loop that
has a much greaterR/L ratio than the first; hence, the solu
tion of the loop-loop problem for the limiting cas
R2/L2@R1/L1 is expected to provide some helpful guid
posts for the solution of the much more complicated loop-
problem.

The double-loop problem is of course a generalization
the classic single-loop problem of a rigid wire loop of res
tanceR and self-inductanceL in thermal equilibrium at ab-
solute temperatureT. That problem had its origins in the
1928 works of Johnson@1# and Nyquist@2#; it was analyzed
in more mathematical depth in 1945 by Wang and Uhle
beck@3#, and it is nowadays a fairly standard textbook top
@4–7#. To collect some formulas that we shall need for la
reference, we begin by briefly summarizing the single-lo
results, using the terminology and notation of a recent tu
rial review @7#.

Denoting the current in theR-L loop at timet by I (t), we
begin with the assumption that the interactions between
conducting electrons and the thermally vibrating atomic l
tice of the wire give rise to athermal emfof the two-term
form 2RI(t)1V(t). HereV(t), called theJohnson emf, is
assumed to be a zero-mean randomly fluctuating quan
2588 © 1997 The American Physical Society
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55 2589MARKOVIAN MODELING OF CLASSICAL THERMAL . . .
that is statistically independent ofI (t8) for all t8<t. The
circuit equation therefore reads

2RI~ t !1V~ t !2L
dI~ t !

dt
50. ~1.1!

The further assumption that classical statistical thermo
namics holds, in the sense that^ 1

2LI
2(t→`)&5 1

2kT, wherek
is Boltzmann’s constant, then leads to the following spec
results.

~i! I (t) is a univariate continuous Markov process of t
Ornstein-Uhlenbeck type, with relaxation timeL/R and dif-
fusion constant 2kTR/L2. Given the initial condition
I (t0)5 i 0, and denoting byN~m,s2! the normal random vari-
able with meanm and variances2, the solution to the single
loop circuit equation~1.1! is

I ~ t !5NS i 0e2~R/L !~ t2t0!,
kT

L
~12e22~R/L !~ t2t0!! D ~ t>t0!.

~1.2!

A numerical simulation of the loop current can be effect
by repeated application of the updating formula

I ~ t1Dt !5I ~ t !e2~R/L !Dt1FkTL ~12e22~R/L !Dt!G1/2n, ~1.3!

wheren is a sample value ofN~0,1!; this updating formula is
exact for anyDt.0.

~ii ! The Johnson emfV(t) is given in terms of the tem
peratureT and the resistanceR by the fluctuation-dissipation
formula,

V~ t !5~2kTR!1/2G~ t !. ~1.4!

HereG(t) isGaussian white noise, a temporally uncorrelated
normal random variable with mean 0 and varianced~0!,
where d is the Dirac delta function. The spectral dens
function SV~n! of V(t), defined so thatSV(n)dn measures
the amount of̂ V2(t)& in the positive cycle frequency inter
val @n,n1dn!, is given byNyquist’s formula,

SV~n!54kTR ~n>0!. ~1.5!

~iii ! The equilibrium loop current

I * ~ t ![ lim
t0→2`

I ~ t !5N~0,kT/L ! ~1.6!

has spectral density function

SI~n!5
4kT

R S 1

11~2pLn/R!2D ~n>0!. ~1.7!

SI(n)dn measures the amount of^I * 2(t)& in the frequency
interval †n,n1dn…. A log-log plot of SI~n! shows a ‘‘knee’’
at frequencyR/2pL, below which the curve has slope 0 an
above which it has slope22.

~iv! And finally, the autocovariance of the equilibrium
current, namelŷ I * (t1)I * (t2)&, is related to the loop resis
tanceR through theconductance formula,
-

c

R215
1

kT E
0

`

^I * ~ t !I * ~ t1t8!&dt8. ~1.8!

Our plan here is as follows. In Sec. II we shall write dow
the circuit equations for two inductively coupled loops, a
then use bivariate continuous Markov process theory to so
those equations subject to the requisite thermodyna
boundary conditions; in particular, we shall derive exact g
eral formulas for the spectral density functions of the lo
currents, and also derive an exact updating formula for
merically simulating those currents. In Sec. III we shall e
amine the implications of these general results for the cas
two identical loops. And in Sec. IV we shall consider th
case of two very dissimilar loops with weak coupling, th
being the study model for the previously mentioned loop-
problem. A brief summary of all our principal findings i
given in Sec. V.

II. THERMAL CURRENTS IN TWO INDUCTIVELY
COUPLED WIRE LOOPS

A. The double-loop circuit equations

Our analysis of the currentsI 1(t) and I 2(t) in the two
loops begins with the usual hypothesis that the interacti
between the conducting electrons and the thermally vibra
atomic lattice of wire loopi ~i51,2! give rise to athermal
emf of the two-term form2RiI i(t)1Vi(t), whereVi(t) is
assumed to be a temporally uncorrelated, zero-mean ran
variable that is independent of bothI 1(t) and I 2(t). We call
RiI i(t) the dissipative voltagein loop i , and Vi(t) the
Johnson emfin loop i . The self- and mutual inductances a
by definition such that the instantaneous magnetic flu
F1(t) andF2(t) linking the respective loops are given by

F1~ t !5L1I 1~ t !1MI 2~ t ! and F2~ t !5L2I 2~ t !1MI 1~ t !.
~2.1!

According to Faraday’s law, any temporal variation inFi(t)
will give rise to an emf2dF i(t)/dt in loop i . The require-
ment that the integral of the electric potential around ea
loop must vanish therefore gives us the pair of relations

2RiI i~ t !1Vi~ t !2
dF i~ t !

dt
50 ~ i51,2!. ~2.2!

Substituting Eqs.~2.1! into Eqs.~2.2! and then solving the
resulting pair of equations simultaneously fordI1(t)/dt and
dI2(t)/dt, we obtain

dI1~ t !

dt
52

L2R1

k
I 1~ t !1

MR2

k
I 2~ t !1

L2
k

V1~ t !2
M

k
V2~ t !,

~2.3a!

dI2~ t !

dt
5
MR1

k
I 1~ t !2

L1R2

k
I 2~ t !2

M

k
V1~ t !1

L1
k

V2~ t !,

~2.3b!

where we have introduced the parameter

k[L1L22M2. ~2.4!
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2590 55DANIEL T. GILLESPIE
Energy considerations can be shown@8# to require that
M2,L1L2 , sok is strictly positive.

Since the Johnson emf’sV1(t) andV2(t) in Eqs.~2.3! are
hypothesized to be independent ofI 1(t8) and I 2(t8) for all
t8,t, then Eqs.~2.3! evidently constitute a set of ‘‘memo
ryless’’ time-evolution equations for those currents; i.e., th
imply that the future behavior of those currents depends
their past values only through their present values. It follo
that the variablesI 1(t) and I 2(t) constitute abivariate con-
tinuous Markov process, and accordingly must satisfy a b
variate Langevin equation@3,5,6,9#. But Eqs.~2.3! will be of
the canonical bivariate Langevin form if and only ifV1(t)
andV2(t), which have been assumed to be independen
I 1(t8) andI 2(t8) also fort85t, have the mathematical form

Vi~ t !5aiG i~ t ! ~ i51,2!. ~2.5!

Here,a1 anda2 are constants, andG1(t) andG2(t) are sta-
tistically independent Gaussian white noise processes. O
with such Gaussian white noise involvement will the mem
ryless time evolutions ofI 1(t) and I 2(t) dictated by Eqs.
~2.3! be self-consistent@9#.

As regards the constantsa1 anda2, we shall prove in Sec
II C that agreement with classical statistical thermodynam
will be obtained if and only if

ai5~2kTRi !
1/2 ~ i51,2!. ~2.6!

This is equivalent to the uncoupledM50 result in Eq.~1.4!.
The plausibility of Eq.~2.6! for MÞ0 may not be universally
acknowledged, as some might maintain that the noise th
inductively fed into loop 1 from loop 2 acts to augme
V1(t) and its spectral density functionS1~n!, and thereby
augments evenR1 through the Nyquist formula~1.5!. The
arguments in Sec. II C that derive Eq.~2.6! will show that
does not happen. But for now, we shall simply regarda1 and
a2 as two constants whose values remain to be determin

With Eqs. ~2.5!, the circuit equations~2.3! now assume
the canonical bivariate ‘‘white-noise’’ Langevin form
@3,5,6,9#:

dI1~ t !

dt
52

L2R1

k
I 1~ t !1

MR2

k
I 2~ t !1

L2a1
k

G1~ t !

2
Ma2

k
G2~ t !, ~2.7a!

dI2~ t !

dt
5
MR1

k
I 1~ t !2

L1R2

k
I 2~ t !2

Ma1
k

G1~ t !

1
L1a2

k
G2~ t !. ~2.7b!

B. Solving the circuit equations

Equations~2.7! are of a type that can be solved exact
but several solution methods exist. One way of proceedin
to write down the equivalent bivariate forward Fokke
Planck equation, and then solve that equation for the jo
density function ofI 1(t) andI 2(t); this is the approach take
by van Kampen@5# and Risken@10#. Another way of pro-
ceeding is to solve the stochastic differential equation~2.7!
y
n
s

of

ly
-

s

is

d.

,
is

t

directly using the formal calculi of Ito or Stratonovich, as h
been done by Gardiner@6# and Honerkamp@11#. All methods
of solution yield mathematically equivalent results, but tho
results are rendered in different ways. The choice of a so
tion method depends to a large extent upon what one inte
to do with the solution.

We shall use here a method of solution that is essenti
equivalent to the Ito method, but which, being less encu
bered with mathematical formalism, yields immediate
computable results using familiar modes of mathemat
reasoning. This approach is predicated on the fact, emp
sized in Ref.@9#, that the continuous, memoryless functio
I 1 and I 2 defined by Eqs.~2.7! are not in fact differentiable,
and that the real meaning of Eqs.~2.7! is that the processesI 1
and I 2 evolve in time according to the following ‘‘infinitesi-
mal updating’’ formulas:

I 1~ t1dt!5I 1~ t !2
L2R1

k
I 1~ t !dt1

MR2

k
I 2~ t !dt

1
L2a1

k
N1~ t !~dt!

1/22
Ma2

k
N2~ t !~dt!

1/2,

~2.8a!

I 2~ t1dt!5I 2~ t !1
MR1

k
I 1~ t !dt2

L1R2

k
I 2~ t !dt

2
Ma1

k
N1~ t !~dt!

1/21
L1a2

k
N2~ t !~dt!

1/2.

~2.8b!

Here,dt is a non-negative infinitesimal variable, i.e., a real
variable that is confined to some interval@0,«# where« is
some arbitrarily small positive number, andN1(t) andN2(t)
are statistically independent, temporally uncorrelated nor
random variables with means 0 and variances 1. We s
refer to Eqs.~2.8! as the ‘‘standard-form’’ bivariate Lange
vin equation. All subsequent results in this paper are deri
from Eqs.~2.8!; however, in the interest of brevity, we sha
omit most of the computational details. We shall genera
assume that Eqs.~2.8! are subject to the ‘‘sure’’ initial con-
ditions

I 1~ t0!5 i 10 and I 2~ t0!5 i 20. ~2.9!

The well established result@5,6,10,11# that I 1(t) andI 2(t)
arenormal for all t.t0 is easily deduced from Eqs.~2.8! by
appealing to the well-known theorem in random variab
theory @12# that any linear combination of normal rando
variables, whether or not they are statistically independen
also normal. Application of this theorem to Eqs.~2.8! for
t5t0 shows thatI 1(t01dt) and I 2(t01dt) are both normal,
and the result for allt.t0 follows by induction.

Any pair of normal random variables is fully characte
ized by giving their two means, their two variances, a
their covariance. Differential equations for these tim
varying quantities can be obtained by algebraically mani
lating Eqs. ~2.8! and then averaging, using the fac
that ^Ni(t)&50, ^N i

2(t)&51, ^N1(t)N2(t)&50, and
^I i(t)Nj (t1t8)&50 for all t8>0; these relations all follow
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55 2591MARKOVIAN MODELING OF CLASSICAL THERMAL . . .
from the definition ofNi(t). Thus, by averaging Eq.~2.8a!
and then passing to the limitdt→0, we get

d

dt
^I 1~ t !&52

L2R1

k
^I 1~ t !&1

MR2

k
^I 2~ t !&.

An analogous equation ford^I 2(t)&/dt follows from Eq.
~2.8b!. By averaging the square of Eq.~2.8a! and then pass
ing to the limitdt→0, we get

d

dt
^I 1

2~ t !&522
L2R1

k
^I 1

2~ t !&12
MR2

k
^I 1~ t !I 2~ t !&

1
L2
2a1

21M2a2
2

k2 .

An analogous equation ford^I 2
2(t)&/dt follows from Eq.

~2.8b!. And by averaging the product of Eqs.~2.8a! and
~2.8b! and then passing to the limitdt→0, we get

d

dt
^I 1~ t !I 2~ t !&5

MR1

k
^I 1

2~ t !&1
MR2

k
^I 2

2~ t !&

2
L1R21L2R1

k
^I 1~ t !I 2~ t !&

2
M ~L1a2

21L2a1
2!

k2 .

Using these equations, it is straightforward to show that if
define the constants

a115k21L2R1 , a1252k21MR2 ,
~2.10!

a2152k21MR1 , a225k21L1R2 ,

and

b15k22~L2
2a1

21M2a2
2!,

b252k22M ~L1a2
21L2a1

2!, ~2.11!

b35k22~L1
2a2

21M2a1
2!,

then the two meansmi(t)[^I i(t)& are the solutions of the
differential equation

d

dt Fm1~ t !
m2~ t !

G52Fa11

a21

a12

a22
GFm1~ t !
m2~ t !

G , ~2.12!

while the two variancesv i(t)[^I i
2(t)&2^I i(t)&

2 and the co-
variancec(t)[^I 1(t)I 2(t)&2^I 1(t)&^I 2(t)& are the solutions
of the differential equation

d

dt F v1~ t !c~ t !
v2~ t !

G52F 2a11

a21

0

2a12

~a111a22!

2a21

0
a12

2a22

GF v1~ t !c~ t !
v2~ t !

G
1F b1b2

b3
G . ~2.13!
e

Together with thenormality of I 1(t) and I 2(t), the solution
[m1(t),m2(t)]

T to Eq. ~2.12! for the initial condition
[m1(0),m2(0)]

T5[ i 10,i 20]
T, and the solution [v1(t),c(t),

v2(t)]
T to Eq. ~2.13! for the initial conditions [v1(0),c(0),

v2(0)]
T5[0,0,0]T, provide a complete solution to Eqs.~2.7!

or ~2.8!. A variety of formal renderings of that solution ca
be found in the literature@5,6,10,11#, but none of these are
especially convenient for our purposes here. We shall ex
ine the asymptotic~t2t0→`! solutions in Sec. II C, and de
velop full solutions in Sec. II E.

C. Thermodynamic, fluctuation-dissipation,
and Nyquist relations

Now we shall establish that the results of the preced
subsection will be consistent with classical statistical therm
dynamics if and only if the constantsa1 and a2 have the
values asserted in Eqs.~2.6!. This will imply, because of
Eqs.~2.5!, that the Johnson emf’s in the two loops are giv
by

Vi~ t !5~2kTRi !
1/2G i~ t ! ~ i51,2!, ~2.14!

which is the standard single-loop fluctuation-dissipation f
mula ~1.4!. A well-known spectral analysis theorem@13#
then implies that the spectral density function ofVi(t) will
be given by

SVi~n!54kTRi ~n>0;i51,2!, ~2.15!

which is the standard single-loop Nyquist formula~1.5!. The
fact that the intrinsic Johnson noise formulas~2.14! and
~2.15! do not involveM tells us thatthe inductive coupling
noise does not affect the intrinsic resistances of the loo.
This finding will be reinforced in Sec. II D.

The condition thatI 1(t) and I 2(t) must behave, in the
limit t2t0→`, in accordance with classical statistical the
modynamics implies thatI 1~`! and I 2~`! must be random
variables with a Maxwell-Boltzmann distribution that is a
propriate to the system temperatureT. It follows that the
average of any functionh of I 1~`! and I 2~`! must be com-
putable as

^h„I 1~`!,I 2~`!…&5ZE
2`

`

di1E
2`

`

di2h~ i 1 ,i 2!

3expS 2
E~ i 1 ,i 2!

kT D , ~2.16!

wherek is Boltzmann’s constant,E( i 1 ,i 2) is the total energy
of the system when the currents in the respective loops
equal toi 1 andi 2, andZ is such that̂1&51. We shall assume
thatE( i 1 ,i 2) is given by the usual classical electromagne
formula @8#,

E~ i 1 ,i 2!5 1
2L1i 1

21 1
2L2i 2

21Mi 1i 2 . ~2.17!

Some straightforward but slightly tedious computation w
show that, for this energy formula, Eq.~2.16! gives

^I 1~`!&5^I 2~`!&50, ~2.18a!

^I 1
2~`!&5k21L2kT, ^I 2

2~`!&5k21L1kT, ~2.18b!
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2592 55DANIEL T. GILLESPIE
^I 1~`!I 2~`!&52k21MkT. ~2.18c!

Equations ~2.18! constitute a set of ‘‘thermodynami
boundary conditions’’ for the circuit equations~2.8!. They
also allow us to compute the average equilibrium energy
the system,

^E„I 1~`!,I 2~`!…&5 1
2L1^I 1

2~`!&1 1
2L2^I 2

2~`!&

1M ^I 1~`!I 2~`!&. ~2.19!

The conventional way of interpreting the three terms on
right here is to say that the first two terms represent
average energy ‘‘in’’ each loop, and the third term represe
the average ‘‘interaction’’ energy between the loops. Fr
Eqs.~2.18! it is easy to see that

1
2L1^I 1

2~`!&5 1
2L2^I 2

2~`!&5
kT

2

L1L2
L1L22M2 , ~2.20a!

M ^I 1~`!I 2~`!&52kT
M2

L1L22M2 . ~2.20b!

So if M50, the equilibrium mean energy of each individu
loop is 1

2kT, and the equilibrium mean interaction energy
zero. AsM is increased from 0 towards its maximum val
(L1L2)

1/2, the mean energies of the individual loops increa
in unison towards1`, while the mean interaction energ
decreases toward2`. But summing the three energies
Eqs.~2.20! shows that the equilibrium meantotal energy of
the double-loop system is, foranyvalue ofM , always equal
to kT, just as we should expect.

The thermodynamic relations~2.16! and~2.17! imply that
I 1~`! and I 2~`! should benormal, and as noted in Sec. II B
that requirement is surely satisfied. It remains only to sh
that the differential equations~2.12! and~2.13! have asymp-
totic solutions that satisfy the thermodynamically requir
moment relations~2.18!. The existence of finite, nonoscilla
tory t→` solutions to Eqs.~2.12! and ~2.13! hinges on
whether the square matrices in those equations have e
values that are allreal andpositive. The eigenvaluesl1 and
l2 of the square matrix in the first moments equation~2.12!
are the roots of its characteristic polynomial,

Qm~l![U~a112l!

a21

a12

~a222l!U
5l22lk21~L1R21L2R1!1k21R1R2 ,

~2.21!

where the second equality follows upon invoking the defi
tions~2.10! of theai j ’s. Using the quadratic formula, we fin
that the eigenvaluesl1 andl2 are given explicitly by

l1/25
~L1R21L2R1!7@~L1R21L2R1!

224kR1R2#
1/2

2k
,

~2.22!

and it is not hard to show that these two eigenvalues
indeed always real and positive. The eigenvaluesg1, g2, and
g3 of the square matrix in the second moments equa
~2.13! are the roots of its characteristic polynomial,
f

e
e
ts

l

e

w

en-

-

re

n

Qv~g![U~2a112g!

a21

0

2a12

~a111a222g!

2a21

0
a12

~2a222g!
U

52g31g23k21~L1R21L2R1!

2g2k21@k21~L1R21L2R1!
212R1R2#

14k22R1R2~L1R21L2R1!, ~2.23!

where again the second equality follows from the definitio
~2.10! of theai j ’s. Since this polynomial is strictly positive
for all g<0, and approaches2` as g→`, then it has no
negative roots and at least one positive root. That the o
two roots will be real~and hence positive! can be verified
numerically in any specific case.

Since all the eigenvalues of Eqs.~2.12! and~2.13! are real
and positive, then those equations must have constan
ymptotic solutions. Clearly those solutions must satisfy

Fa11

a21

a12

a22
GFm1~`!

m2~`!G5F00G ~2.24!

and

F 2a11

a21

0

2a12

~a111a22!

2a21

0
a12

2a22

GF v1~`!

c~`!

v2~`!
G5F b1b2

b3
G . ~2.25!

Consider first the pair of algebraic equations~2.24!. Since
the determinant of coefficients isQm(0)5k21R1R2.0,
then Cramer’s rule implies that the only solutions are

m1~`!5m2~`!50. ~2.26!

So the thermodynamic requirements~2.18a! are satisfied.
Given that fact, the remaining thermodynamic requireme
~2.18b! and ~2.18c! can be written simply as

v1~`!5
L2kT

k
, v2~`!5

L1kT

k
, c~`!52

MkT

k
.

~2.27!

Using the definitions~2.10! and ~2.11!, straightforward but
rather tedious algebra reveals that the set of three cou
equations~2.25! has solutions~2.27! if and only if a1 anda2
have the values~2.6!. We conclude that Eqs.~2.6! are a
necessary and sufficient condition for our Markovian mod
ing to be consistent with classical thermodynamics. Hen
forth, we shall regardai as simply an abbreviation fo
(2kTRi)

1/2.

D. Spectral densities of the currents
and the conductance formulas

We define the equilibrium loop currentsI 1* (t) and I 2* (t)
by

I i* ~ t ![ lim
t0→2`

I i~ t ! ~ i51,2!. ~2.28!

SinceI i* (t) is basically the same asI i~`!, then the analysis
in the preceding section shows thatI i* (t) is a stationary,
zero-mean, normal random process whose variance is g
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by the constant valuev i~`! in Eqs. ~2.27!. It follows that
I i* (t) will have a spectral density function,SI i(n), which is

such thatSI i(n)dn gives the amount of̂I i*
2(t)&5v i(`) due

to frequencies in the positive infinitesimal interval@n,n1dn!.
In this section we shall derive an explicit formula fo
SI1(n); the companion formula forSI2(n) will then follow
by a simple 1↔2 interchange of all indices.

Denoting the autocovariance ofI 1* (t) by

z1~ t8![^I 1* ~ t !I 1* ~ t1t8!&[ lim
t0→2`

^I 1~ t !I 1~ t1t8!&, ~2.29!

then according to elementary spectral theory@13#, SI1(n) can
be computed as the positive-frequency Fourier amplitude
this autocovariance:

SI1~n!54E
0

`

z1~ t8!cos~2pnt8!dt8 ~n>0!. ~2.30!

To computez1(t8) for use in Eq.~2.30!, we return to the
two circuit equations~2.8!. We first replacet by t1t8 anddt
by dt8. Then, multiplying each of the resulting two equatio
through byI 1(t) and averaging, we get

^I 1~ t !I 1~ t1t81dt8!&5^I 1~ t !I 1~ t1t8!&

2k21L2R1^I 1~ t !I 1~ t1t8!&dt8

1k21MR2^I 1~ t !I 2~ t1t8!&dt8,

^I 1~ t !I 2~ t1t81dt8!5^I 1~ t !I 2~ t1t8!&

1k21MR1^I 1~ t !I 1~ t1t8!&dt8

2k21L1R2^I 1~ t !I 2~ t1t8!&dt8.

Taking the limitdt8→0, and recalling the definitions~2.10!,
we obtain

d

dt8
F ^I 1~ t !I 1~ t1t8!&
^I 1~ t !I 2~ t1t8!&G52Fa11

a21

a12

a22
GF ^I 1~ t !I 1~ t1t8!&

^I 1~ t !I 2~ t1t8!&G .
Finally, taking the limit~t2t0!→` and introducing the aux
iliary function

z2~ t8![^I 1* ~ t !I 2* ~ t1t8!&[ lim
t0→2`

^I 1~ t !I 2~ t1t8!&, ~2.31!

we get

d

dt8
Fz1~ t8!

z2~ t8!G52Fa11

a21

a12

a22
GFz1~ t8!

z2~ t8!G . ~2.32!

We shall computez1(t8) for Eq. ~2.30! by solving Eqs.
~3.32! subject to the initial conditions

z1~0!5k21L2kT, z2~0!52k21MkT, ~2.33!

which follow immediately from Eqs.~2.29!, ~2.31!, and
~2.27!.

The eigenvaluesl1 and l2 of the square matrix in Eq
~2.32! are given in Eq.~2.22!. Those eigenvalues arereal,
positive, and in theMÞ0 case of interest here,distinct. By
of

appealing to the generic solution for a vector different
equation of this form@14#, we ultimately find that

z1~ t8!5s1e
2l1t81s2e

2l2t8 ~ t8>0!, ~2.34!

wheres1 ands2 are defined by

s1[
kT

k

L21Mh

11~R1 /R2!h
2 , ~2.35a!

s2[
L2kT

k
2s1 , ~2.35b!

with

h[
~L1R22L2R1!2@~L1R22L2R1!

214M2R1R2#
1/2

2MR1
.

~2.36!

Substituting Eq.~2.34! into Eq. ~2.30! and then perform-
ing the straightforward integration overt8, we obtain the
following formula for the spectral density function o
I 1* (t):

SI1~n!54F s1 /l1

11~2pn/l1!
2 1

s2 /l2

11~2pn/l2!
2G ~n>0!.

~2.37!

Again,l1 andl2 are as given in Eq.~2.22!, ands1 ands2 are
given by Eqs.~2.35! and ~2.36!. As a rudimentary check on
this result, one can easily verify, using Eqs.~2.35b! and
~2.18b!, that the integral of Eq.~2.37! over alln.0 yields the
required equilibrium current intensitŷI 1

2~`!&.
We shall examine the implications of Eq.~2.37! in detail

for two special cases in Secs. III and IV. But two gene
results should be noted now. Both of these results de
from the fact that the integral of the intermediate formu
~2.34! over all t8.0 gives@15#

E
0

`

z1~ t8!dt85
s1
l1

1
s2
l2

5
kT

R1
. ~2.38!

First, by settingn50 in Eq.~2.37! and then invoking the las
part of Eq.~2.38!, we see thatSI1(n50)54kT/R1, indepen-
dently ofM ; therefore,there is no inductive augmentation o
the noise in the loop current nearn50.

Second, if we simply combine Eq.~2.38! with the defini-
tion of z1(t8) in Eq. ~2.29!, we get

R1
215

1

kT E
0

`

^I 1* ~ t !I 1* ~ t1t8!&dt8. ~2.39!

This is the standard single-loop conductance formula~1.8!.
Its validity here tells us that, even though the behavior of
current in loop 1 is substantially altered by the presence
loop 2, the specific property of that current that characteri
the resistanceof loop 1 isnot altered. This finding provides
additional support for the inference drawn earlier, in conn
tion with Eqs.~2.14! and ~2.15!, that the noise transmitted
between the two loops through their inductive coupling do
not change the intrinsic resistances of the loops.
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E. Monte Carlo simulation of the currents

The key to numerically simulating the currents in t
loops lies in being able to compute, from the values of
currents at any timet, their values at any later timet1Dt. A
simulation is then effected by starting with the initial curre
values ~2.9! and repeatedly applying the ‘‘updating alg
rithm’’ to generate samplings of the currents at timest01Dt,
t012Dt, t013Dt, etc. The simplest updating algorithm
the pair of formulas obtained by replacing, in the stand
form Langevin equations~2.8!, the infinitesimalvariabledt
by thefinite variableDt, but that updating algorithm will be
accurate only ifDt is ‘‘sufficiently small.’’ We present now
an updating algorithm that is practically as fast, yet isexact
for anypositive value ofDt.

Assuming that the values ofI 1(t) and I 2(t) are known,
then by our results in Sec. II B,I 1(t1Dt) andI 2(t1Dt) will
be normal random variables, whose meansm1(Dt) and
m2(Dt) are thet5Dt solutions to Eqs.~2.12! for the initial
conditionsm1(0)5I 1(t) andm2(0)5I 2(t), and whose vari-
ancesv1(Dt) and v2(Dt) and covariancec(Dt) are the
t5Dt solutions to Eqs.~2.13! for the initial conditions
v1(0)5c(0)5v2(0)50. If we know the values of those fiv
moments, then a simple result in random variable theory
the representation of two arbitrarily correlated normal ra
dom variables@16# allows us to computeI 1(t1Dt) and
I 2(t1Dt) as

I 1~ t1Dt !5m1~Dt !1v1
1/2~Dt !n1 , ~2.40a!

I 2~ t1Dt !5m2~Dt !1
c~Dt !

v1
1/2~Dt !

n1

1S v2~Dt !2
c2~Dt !

v1~Dt ! D
1/2

n2 , ~2.40b!

wheren1 andn2 are two statistically independent samples
the random variableN~0,1! @17#.

To implement the foregoing updating procedure, we e
dently need to compute explicit expressions for thet5Dt
solutionsmi(Dt), v i(Dt), and c(Dt) to Eqs. ~2.12! and
~2.13!. This can be accomplished by straightforwardly imp
menting the generic solution formula for a first-order, line
matrix differential equation@14#. The result is the following
exact simulation algorithm.

Step 1. Specify values for the physical parametersR1, L1,
R2, L2, M , and kT, taking care to ensure tha
0,M,(L1L2)

1/2. Specify the initial valuesi 10 andi 20 of the
loop currents. And specify values for the time-stepDt and a
stopping timetstop.

Step 2. Evaluatequantities that will not changeduring the
course of the simulation: Computek from Eq. ~2.4!, a1 and
a2 from Eqs.~2.6!, theai j ’s from Eqs.~2.10!, and thebi ’s
from Eqs.~2.11!. Compute the eigenvaluesli and eigenvec-
tors [ui1,ui2]

T ~i51,2! of the square matrix in Eq.~2.12!,
and in preparation for computing the expansion coefficie
$ji% of m~0![I (t) in the eigenvectors$ui%, compute the quan
tities

u115u22/u0 , u1252u21/u0 ,
~2.41a!

u2152u12/u0 , u225u11/u0 ,
e

t

d

n
-

f

i-

-
,

ts

where

u0[u11u222u12u21. ~2.41b!

Compute the eigenvaluesgi and eigenvectors [wi1,wi2,wi3]
T

~i51,2,3! of the square matrix in Eq.~2.13!, and compute the
expansion coefficients$bi% of b[[b1 ,b2 ,b3]

T in the eigen-
vectors$wi% by numerically solving the three simultaneou
algebraic equations

bj5(
i51

3

b iwi j ~ j51,2,3!. ~2.42!

Compute finally the auxiliary quantities@14#

m i j[e2l iDtui j ~ i , j51,2!, ~2.43!

n i j[b i S 12e2g iDt

g i
Dwi j ~ i , j51,2,3!, ~2.44!

v1~Dt !5(
i51

3

n i1 , c~Dt !5(
i51

3

n i2 , v2~Dt !5(
i51

3

n i3 ,

~2.45!

and

A1[v1
1/2~Dt !, A2[

c~Dt !

v1
1/2~Dt !

,

A3[S v2~Dt !2
c2~Dt !

v1~Dt ! D
1/2

. ~2.46!

Step 3. With I 1 and I 2 representing the values of the loo
currents at the ‘‘present’’ timet, initialize these variables by
settingt50, I 15 i 10, andI 25 i 20.

Step 4. Begin the main loop of the simulationby plotting
out the points~t,I 1! and ~t,I 2!.

Step 5. Increaset by Dt. Terminate the simulation if the
new t exceedststop.

Step 6. Generate two independent sample valuesn1 and
n2 of the unit normal random variableN~0,1! @17#.

Step 7. Update the loop currents by first computing

j i5u i1I 11u i2I 2 ~ i51,2!, ~2.47!

then computing@14#

mi5j1m1i1j2m2i ~ i51,2!, ~2.48!

and finally putting, in accordance with Eqs.~2.40!,

I 15m11A1n1 , ~2.49a!

I 25m21A2n11A3n2 . ~2.49b!

Step 8. Return to Step 4.
Although the preparatory computations in Step 2 are

merous and somewhat involved, the computations that m
be carried out at each time step~in Steps 5–7! are few and
relatively easy. So this exact simulation procedure will
fast. Its execution time will be quite comparable to that
the approximate first-order updating formulas obtained
finitizing dt in the standard-form Langevin equations~2.8!.
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Note that both updating algorithms require exactly two u
normal random numbers at each time step. Simulation res
obtained using the exact algorithm will be exhibited for som
specific cases in Secs. III and IV.

III. THE CASE OF IDENTICAL LOOPS

In this section we consider the identical loop case
which

R15R25R and L15L25L. ~3.1!

It will be convenient now to measure the inductive couplin
between the two loops by

g[M /L, ~3.2!

which evidently goes from 0 to 1 as the mutual inductanceM
goes from its lower limit 0 to its~unattainable! upper limitL.
Sok5L2(12g2), and the asymptotic variances and cova
ance of the currents in the loops, as given in general by E
~2.18!, now read

FIG. 1. Linear~a! and logarithmic~b! plots ofSI(n;g) for the
identical loop case withR5L5kT51 andg values 0, 0.4, 0.8, and
0.999. In~a!, note the slight noisesuppressionwith increasingg at
low frequencies. In~b!, note how the knee frequencyR/2pL in the
g50 curve splits, for g.0, into two knees at frequencies
l15L/2pR(11g) andl25L/2pR(12g), in between which a brief
‘‘1/ f -type’’ noise behavior is exhibited.
t
lts
e

-
s.

^I i
2~`!&5

kT

L

1

12g2
~ i51,2!, ~3.3a!

^I 1~`!I 2~`!&52
kT

L

g

12g2
. ~3.3b!

These equations show that ifg is increased from 0 towards 1
then the current in each loop becomesincreasingly noisyand
increasingly anticorrelated; indeed, the correlation coeffi
cient of the loop currents can be seen from Eqs.~3.3! to be
equal to2g, which approaches the fully anticorrelated val
of 21 asg approaches its upper limit 1. In this section w
shall examine some of the manifestations of these predi
behaviors.

A. Spectral density of the current

For the parameter values in Eqs.~3.1! and ~3.2!, we find
that the eigenvaluesl1 and l2 as given by Eqs.~2.22! be-
come

l15
R

L~11g!
and l25

R

L~12g!
. ~3.4!

And upon chasing through the algebra of Eqs.~2.35! and
~2.36!, we find that formula~2.37! for the spectral density
function of the asymptotic current in either loop becomes

SI~n;g!5
2kT

R S 1

11@~2pLn/R!~11g!#2

1
1

11@~2pLn/R!~12g!#2D , ~3.5!

where we now note explicitly the dependency of this fun
tion on the coupling constantg.

In Fig. 1 we show linear and logarithmic plots ofSI(n;g)
for R5L5kT51 andg values 0, 0.4, 0.8, and 0.999. As ca
be seen in Fig. 1~b!, the ‘‘knee’’ in the g50 curve at fre-
quencyR/2pL splits, for g.0, into two knees at frequencie
l1/2p andl2/2p. Below the lower knee frequencyl1/2p the
logarithmic curve still has slope 0, and above the upper k
frequencyl2/2p it still has slope22. But for frequencies
lying between the two knee frequencies, the logarithm
curve is reasonably well approximated by a straight l
whose slope is between 0 and21. For example, in the loga
rithmic plot of SI~n,0.8! @the solid curve in Fig. 1~b!#, the
curve in the frequency decade betweenl1/2p
51/2p~110.8!'0.09 andl2/2p51/2p~120.8!50.8 is found
to be reasonably well approximated by a straight line
slope20.35.

Some straightforward algebra leads to the following lo
frequency and high-frequency approximations to Eq.~3.5!:
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SI~n;g!'H 4kT

R F12S 2pL

R D 2~11g2!n2G for n!l1/2p,

S 11g2

~12g2!2D kTR

p2L2
1

n2
for n@l2/2p.

~3.6a!
~3.6b!
h

c

i

n

a

n

e

i
g

st,
m

-

ro-

he
ng
is
s
ase
.
a

Equation ~3.6b! confirms the assertion that the hig
frequency behavior ofSI(n;g) is 1/f

2. It also gives us, as the
factor in parentheses on the right-hand side, the ‘‘hig
frequency enhancement ratio’’SI(n;g)/SI~n;0!. For g!1
this ratio is quite small, being approximately equal
113g2; however, the ratio evidently approaches` asg→1.
The ratio measures the high-frequency ‘‘parallel displa
ments’’ of the curves in Fig. 1~b! for successively higherg
values. The consequent flattening out of the curve ofSI(n;g)
at largen as g→1 is consistent with the divergence of th
mean loop energy in that limit implied by Eq.~3.3a!.

Equation~3.6a! shows thatSI(0;g) is independent ofg;
thus, the inductive coupling has no effect on the noise le
in the loop atn50. But a very intriguing effect is indicated
by Eq.~3.6a! at frequenciesjust above0. There, larger values
of g evidently diminish the noise in the loop. This ‘‘low-
frequency quieting’’ can be seen most clearly in the line
plots of Fig. 1~a!. It is a weak effect, but the fact that
occurs at all is very surprising. By simply bringing the tw
loops closer together, and thereby increasingg and thetotal
noise in each loop, we will actuallyreducethe noise in each
loop over a restricted range of low frequencies.

B. The sum and difference currents

In the identical loop case, the sum and difference curre

I6~ t ![I 1~ t !6I 2~ t !, ~3.7!

exhibit a very interesting behavior. By substituting the ide
tical loop parameters~3.1! and ~3.2! into the general circuit
equations~2!–~7!, invoking the definitions ofk and ai in
Eqs.~2.4! and~2.6!, and then computing the sum and diffe
ence of the resulting two equations, we get

dI6~ t !

dt
52

R

L~16g!
I6~ t !1

~2kTR!1/2

L~16g!
@G1~ t !6G2~ t !#.

~3.8!

SinceG1(t) and G2(t) are statistically independent norm
random variables with means 0 and variancesd~0!, then
G1(t)6G2(t) will be zero-mean normals with means 0 a
variances 2d~0!, which is the same as& times a zero-mean
normal with mean 0 and varianced~0! @18#; thus,

G1~ t !6G2~ t !521/2G6~ t !, ~3.9!

whereG1(t) andG2(t) are Gaussian white noise process
G1(t) andG2(t) are, moreover,statistically independentof
each other; because, as can easily be shown from Eq.~3.9!,
^G1(t)G2(t)&50, and a vanishing covariance implies stat
tical independence fornormalrandom variables. Substitutin
Eqs.~3.9! into Eqs.~3.8!, we finally obtain
-

h-

to

e-

e
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ar
t
o

ts,

n-

r-

l

d

s.
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dI6~ t !

dt
52

R

L~16g!
I6~ t !1

@2k~2T!R#1/2

L~16g!
G6~ t !.

~3.10!

Equations~3.10! are interesting for several reasons. Fir
by comparing them with the canonical white noise for
Ornstein-Uhlenbeck~OU! Langevin equation@19#, we may
deduce thatI1(t) and I2(t) are OU processes with respec
tive relaxation times and diffusion constants

t65
L~16g!

R
and c65

4kTR

@L~16g!#2
. ~3.11!

Furthermore,I1(t) andI2(t) arestatistically independentof
each other, since their driving Gaussian white noise p
cessesG1(t) andG2(t) are statistically independent. All this
is rather remarkable sinceI1(t) and I2(t) are defined in
terms of two processes,I 1(t) and I 2(t), that are themselves
not individually Markovian andnot statistically independent
of each other. Sincet2,t1 , then we may expectI2(t) to be
a ‘‘faster moving’’ process thanI1(t). And recalling that an
OU process with relaxation timet and diffusion constantc is
asymptoticallyN(0,ct/2) @19#, we may infer from Eqs.
~3.11! that

I6~ t→`!5NS 0, 2kT

L~16g! D . ~3.12!

This shows that the asymptotic variance ofI2(t) will be
larger than that ofI1(t), so we may expectI2(t) to be a
more ‘‘widely ranging’’ process thanI1(t).

A second interesting feature of Eqs.~3.10! emerges when
we recall, from Eqs.~1.1! and~1.4!, that the equation for the
thermal currentI (t) in a wire loop of resistanceR and self-
inductanceL at absolute temperatureT is

dI~ t !

dt
52

R

L
I ~ t !1

~2kTR!1/2

L
G~ t !, ~3.13!

whereG(t) is Gaussian white noise. Comparing Eqs.~3.10!
with Eq. ~3.13!, we see thatI1(t) and I2(t) can be viewed
as thermal currents in twoisolatedwire loops that have the
following respective physical parameters:

R65R, L65L~16g!, T652T. ~3.14!

Finally, it is interesting to examine what happens to t
sum and difference currents in the limit that the coupli
constantg approaches its upper limit 1. We can think of th
limit being realized physically by bringing the two loop
together so that they coalesce into a single loop. In the c
of I1(t), the limit g→1 would seem to imply, from Eqs
~3.14!, that I1(t) would become the thermal current in
loop with resistanceR, self-inductance 2L, and temperature
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2T, but another interpretation is possible: If we putg51 in
the ‘‘1’’ version of Eq. ~3.10!, then we see that the resu
can be written as Eq.~3.13! with R replaced byR/2; hence,
I1(t) becomes in the limitg→1 the thermal current in a wire
loop of resistanceR/2, self-inductanceL, and absolute tem
peratureT. This is physically quite reasonable. A merger
two identical loops should produce a loop with thesame
self-inductance and temperature, buthalf the resistance. And
clearly, the total current in the resultant loop should be
sumof the currents in the two loops being merged. Acco
ing to Eq. ~3.12!, I1(t) will have, in the limit g→1, an
asymptotic variance ofkT/L; that is thesameas the asymp-
totic variances ofI 1(t) and I 2(t) when they are uncouple
~g50!. But the ‘‘1’’ version of Eqs.~3.11! shows that the
relaxation time ofI1(t) will then be 2L/R, which is twice
that of I 1(t) andI 2(t) when they are uncoupled; so, althoug
I1(t) will fluctuate over the same range as the uncoup
I 1(t) and I 2(t), it will do so at just half the speed.

To deduce the behavior of the difference currentI2(t) in
the limit g→1, we observe from the ‘‘2’’ version of Eqs.
~3.11! that, in this limit,t2→0 andc2→` but

t2c2
1/25

L~12g!

R

~4kTR!1/2

L~12g!
5S 4kTR D 1/2

remainsconstant. We thus infer from the zero-tau limit theo
rem for OU processes@19# that

lim
g→1

I2~ t !5S 4kTR D 1/2G~ t !, ~3.15!

whereG(t) is Gaussian white noise. This in turn implies, b
a well-known theorem of spectral analysis@13#, that the
spectral density function ofI2(t) in the limit g→1 is

lim
g→1

SI2~n!5
8kT

R
52SI~n50;g50! ~n>0!, ~3.16!

where the last step follows from Eq.~3.5!.

C. Simulation results

Figures 2–6 show results obtained by using the simu
tion algorithm of Sec. II E to simulate the loop currents
the identical loop case withR5L5kT51 andg values of
1026, 0.4, 0.8, 0.95, and 0.999. For each of the five simu
tion runs we tookDt50.001 andtstop59.0. As discussed in
Sec. II E, all of these simulations areexact; in particular, no
errors arise becauseDt is not a true infinitesimal. In each
run, the loop currentsI 1(t) and I 2(t) were generated first
using the aforementioned algorithm, and then the sum
difference currentsI1(t) and I2(t) were computed from
Eqs. ~3.7!. The dotted horizontal lines in the plots ofI 1(t)
and I 2(t) indicate their asymptotic one-standard deviati
envelopes6@kT/L(12g2!#1/2, as predicted by Eqs.~3.3a!.
The dotted horizontal lines in the plots ofI1(t) and I2(t)
indicate their asymptotic one-standard deviation envelo
6[2kT/L(16g)] 1/2, as predicted by Eqs.~3.12!.

The plots in Fig. 2 forg51026 show an essentiallyun-
coupledpair of loops for which theI 1(t) and I 2(t) trajecto-
ries are statistically identical and statistically independe
e
-

d

-

-

d

s

t,

and likewise for theI1(t) and I2(t) trajectories. Asg is
steadily increased in the runs of Figs. 3–6, theI 1(t) and
I 2(t) trajectories remain statistically identical but becom
increasing anticorrelated; by contrast, theI1(t) and I2(t)
trajectories become statistically different and remain statis
cally independent. We have used the same base uniform
dom number sequence for all five runs in order to obse
how various statistical idiosyncrasies in the trajectori
change asg is increased. In theI 1(t) and I 2(t) trajectories,
the fluctuations evidently become increasingly wild~note the
vertical axis scale changes in Figs. 5 and 6!, but at the same
time those two trajectories become transformed into n
mirror images of each other. Atg50.999, bothI 1(t) and
I 2(t) are giving fair imitations of white noise, as we shou
expect from their common spectral density curve in Fig.
The emergingexactGaussian white noise behavior ofI2(t),
predicted by Eqs.~3.15! and~3.16!, is evident in Fig. 6. But
the companionI1(t) trajectory has evolved into a compara
tively docile Ornstein-Uhlenbeck process, characterized,
cording to Eqs.~3.11!, by the relaxation time 2L/R52 and
the diffusion constantkTR/L251. The difference between
the ‘‘texture’’ of the I1(t) trajectory in Fig. 6 and the tex-

FIG. 2. Trajectories ofI 1(t), I 2(t), I1(t)[I 1(t)1I 2(t), and
I2(t)[I 1(t)2I 2(t), as computed using the exact simulation alg
rithm of Sec. II E for the identical loop case withR5L5kT51,
g51026 ~i.e., essentially zero coupling!, I 1(0)5I 2(0)50, andDt
50.001. The dotted horizontal lines show the theoretically p
dicted asymptotic one-standard deviation envelopes. See the dis
sion in Sec. III C.
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tures of theI 1(t) and I 2(t) trajectories in Fig. 2 reflects the
larger ~by a factor of 2! relaxation time ofI1(t).

IV. THE CASE OF VERY DISSIMILAR LOOPS
WITH WEAK COUPLING

We now consider the case in which the resistance of loo
2 is very much larger than that of loop 1, while the inductiv
coupling between the two loops is very weak; specifically
we take

L15L25L, ~4.1a!

R2@R1 , ~4.1b!

g[M /L!1. ~4.1c!

SinceLi /Ri measures the time scale of the intrinsic therma
fluctuations in loopi , then those fluctuations will be much
more rapid in loop 2 than in loop 1. This problem serves a
a highly simplified idealization of the problem in which loop
2 is replaced by a beaker of salt water, since the rapid flu
tuations in loop 2 mimic the rapid Brownian movements o
the Na1 and Cl2 ions, which in turn induce a fluctuating emf

FIG. 3. As in Fig. 2, and using the same base random numb
sequence, except thatg50.4. See the discussion in Sec. III C.
p

,

l

s

c-
f

in loop 1. The loop-ion problem will be addressed more d
rectly in a later paper; however, one of our objectives here
to lay the foundation for some approximations that seem
be required to solve that more complicated problem.

Since the exact formula~2.37! for the spectral density
function SI1(n) of I 1(t) is too complicated to analytically

approximate according to Eqs.~4.1!, we shall begin by using
Eqs. ~4.1! to analytically approximate the original circuit
equations~2.8!. Then we shall derive from the thus approxi
mated circuit equations an approximate formula forSI1(n).

Finally, we shall numerically compare the predictions of tha
approximate formula with the predictions of the exact for
mula ~2.37!. We are interested here in not only the form an
accuracy of the approximate solution, but also the logic
thrust of the analysis that leads to it. We shall conclude b
using the exact simulation algorithm of Sec. II E to see d
rectly how the fluctuating character of the current in loop 1
altered by the presence of loop 2.

A. The approximated circuit equations

With Eqs. ~4.1a! and ~4.1c!, the definition ofk in Eq.
~2.4! givesk'L2. Substituting this into the circuit equations
~2.8! and again invoking Eq.~4.1a!, we get

er FIG. 4. As in Fig. 2, and using the same base random numb
sequence, except thatg50.8. See the discussion in Sec. III C.
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I 1~ t1dt!'I 1~ t !2
R1

L
I 1~ t !dt1

gR2
L

I 2~ t !dt

1
a1
L
N1~ t !~dt!

1/22
ga2
L

N2~ t !~dt!
1/2, ~4.2a!

I 2~ t1dt!'I 2~ t !1
gR1
L

I 1~ t !dt2
R2

L
I 2~ t !dt

2
ga1
L

N1~ t !~dt!
1/21

a2
L
N2~ t !~dt!

1/2. ~4.2b!

Since g!1 andR1!R2 , then surelygR1!R2 ; therefore,
inasmuch asI 1(t) and I 2(t) will typically have comparable
magnitudes, by virtue of Eqs.~2.27!, we may neglect on the
right-hand side of Eq.~4.2b! the secondterm relative to the
third term. Furthermore, since by Eq.~2.6! ai is proportional
ARi , then surelyga1!a2 ; so, sinceN1(t) andN2(t) will
typically have comparable magnitudes, we may also neg
on the right-hand side of Eq.~4.2b! the fourth term relative
to the fifth term. We thus conclude that conditions~4.1! al-
low us to approximate Eqs.~2.8! by

FIG. 5. As in Fig. 2, and using the same base random num
sequence, except thatg50.95. See the discussion in Sec. III C.
ct

I 1~ t1dt!'I 1~ t !2
R1

L
I 1~ t !dt1

gR2
L

I 2~ t !dt

1
a1
L
N1~ t !~dt!

1/22
ga2
L

N2~ t !~dt!
1/2, ~4.3a!

I 2~ t1dt!'I 2~ t !2
R2

L
I 2~ t !dt1

a2
L
N2~ t !~dt!

1/2. ~4.3b!

Before we proceed to examine the implications of t
approximate circuit equations~4.3!, we want to take note of
another way in which those equations might have been
tained. By using the definition ofai and the fact that
Ni(t)(dt)

1/25G i(t)dt, it is not hard to show that Eqs.~4.3!
can be written equivalently as

2R1I 1~ t !1~2kTR1!
1/2G1~ t !2

d

dt
@LI 1~ t !1MI 2~ t !#'0,

~4.4a!

2R2I 2~ t !1~2kTR2!
1/2G2~ t !2

d

dt
@LI 2~ t !#'0. ~4.4b!

These are evidently the circuit equations that we could h
written down immediatelyif we had made the following two

er FIG. 6. As in Fig. 2, and using the same base random num
sequence, except thatg50.999. See the discussion in Sec. III C.
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assumptions: ~i! the thermal emf’s in the two loops are th
same as they would be if the loops were isolated, and~ii !
loop 2 does not see the Faraday emf produced by the cu
in loop 1. Assumption~i! is, as we saw in Sec. II C, strictly
true, but assumption~ii ! is an approximation that follows
from conditions~4.1!.

As can be seen from either Eqs.~4.3b! or ~4.4b!, I 2(t)
emerges in this approximation as the sameautonomouspro-
cess it would be ifM were equal to zero; i.e.,I 2(t) is an
Ornstein-Uhlenbeck process with relaxation timeL/R2 and
diffusion constant 2kTR2/L

2.
To determineI 1(t), we begin by squaring Eq.~4.3a!, av-

eraging the result, and then passing to the limitdt→0. Re-
membering thata i

252kTRi , we obtain

d

dt
^I 1

2~ t !&'22
R1

L
^I 1

2~ t !&12
gR2
L

^I 1~ t !I 2~ t !&

1
2kT

L2
~R11g2R2!. ~4.5a!

Performing these same operations on the product of E
~4.3a! and ~4.3b! gives

d

dt
^I 1~ t !I 2~ t !&'2

~R11R2!

L
^I 1~ t !I 2~ t !&1

gR2
L

^I 2
2~ t !&

2
g2kTR2

L2
. ~4.5b!

In the limit t→`, the above two equations evidently becom

0'22
R1

L
^I 1

2~`!&12
gR2
L

^I 1~`!I 2~`!&

1
2kT

L2
~R11g2R2!, ~4.6a!

0'2
~R11R2!

L
^I 1~`!I 2~`!&1

gR2
L

^I 2
2~`!&2

g2kTR2
L2

.

~4.6b!

Now, the approximate isolated character ofI 2(t) implies that
^I 2

2(`)&'kT/L. Inserting this into Eq.~4.6b! and then solv-
ing for ^I 1(`)I 2(`)&, we obtain

^I 1~`!I 2~`!&'2
gkT

L~11R1 /R2!
. ~4.7!

And inserting this result into Eq.~4.6a! and then solving for
^I 1
2~`!&, we get

^I 1
2~`!&'

kT

L S 11
g2

11R1 /R2
D . ~4.8!

To check the results~4.7! and~4.8!, which we shall make
use of shortly, we note that the exact formulas~2.18! give,
for L15L25L,

^I 1
2~`!&5

kT

L~12g2!
and ^I 1~`!I 2~`!&52

gkT

L~12g2!
.

nt

s.

Under our present restrictionsR1!R2 andg!1, these exact
results are indeed reasonably well approximated by E
~4.7! and ~4.8!; in particular, we have fromeither ^I 1

2~`!&
formula that

L

2
^I 1

2~`!&'
kT

2
~11g2!. ~4.9!

To compute the autocovariancez1(t8) of the equilibrium
current in loop 1, as defined in Eq.~2.29!, we begin by
replacing in Eqs.~4.3! t by t1t8 anddt by dt8. Then mul-
tiplying each of the resulting two equations through byI 1(t)
and averaging, we get

^I 1~ t !I 1~ t1t81dt8!&'^I 1~ t !I 1~ t1t8!&

2
R1

L
^I 1~ t !I 1~ t1t8!&dt8

1
gR2
L

^I 1~ t !I 2~ t1t8!&dt8,

^I 1~ t !I 2~ t1t81dt8!&'^I 1~ t !I 2~ t1t8!&

2
R2

L
^I 1~ t !I 2~ t1t8!&dt8.

Now taking first the limitdt8→0, and then the limitt0→2`,
we obtain, on account of the definitions~2.29! and ~2.31!,

d

dt8
z1~ t8!'2

R1

L
z1~ t8!1

gR2
L

z2~ t8!, ~4.10a!

d

dt8
z2~ t8!'2

R2

L
z2~ t8!. ~4.10b!

The definitions~2.29! and~2.31!, along with our results~4.7!
and ~4.8!, imply that the initial conditions for these two
coupled differential equations are

z1~0!5^I 1~`!I 1~`!&'
kT

L S 11
g2

11R1 /R2
D , ~4.11a!

z2~0!5^I 1~`!I 2~`!&'2
gkT

L~11R1 /R2!
. ~4.11b!

Equation ~4.10b! is easily solved forz2(t8) subject to the
initial condition ~4.11b!. When that solution is substitute
into Eq. ~4.10a!, one obtains a closed differential equatio
for z1(t8) whose solution, for the initial condition~4.11a!, is
straightforwardly found to be

z1~ t8!'
kT

L H S 12
g2~R1 /R2!

12~R1 /R2!
2De2~R1 /L !t8

1
g2

12~R1 /R2!
2 e

2~R2 /L !t8J
~R2@R1 ,g!1;t8>0!. ~4.12!

In the next section we shall see what this approxim
formula for the autocovariance of the equilibrium curre
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55 2601MARKOVIAN MODELING OF CLASSICAL THERMAL . . .
I 1* (t) in loop 1 implies for the spectral density function
that current. As a check on Eq.~4.12!, we note that by inte-
grating it over allt8.0, we get

E
0

`

z1~ t8!dt8'
kT

L H S 12
g2~R1 /R2!

12~R1 /R2!
2D L

R1

1
g2

12~R1 /R2!
2

L

R2
J 5

kT

R1
;

this, in light of the definition~2.29!, is just the single-loop
conductance formula~2.39!.

B. Spectral densities of the currents

The approximate spectral density function of the equil
rium current in loop 2 under conditions~4.1! is of course the
standard single-loop result~1.7! with R5R2 . To find the
corresponding approximate spectral density function of
equilibrium current in loop 1, we must substitute our a
proximate formula~4.12! for z1(t8) into Eq. ~2.30! and then
perform thet8 integration. This is straightforwardly accom
plished, and the result can be written in the form

SI1~n;g!'
4kT

R1
S 1

11~2pLn/R1!
2D

3F11
~2pLg!2

R1R2

n2

11~2pLn/R2!
2G

~R2@R1 ,g!1;n>0!. ~4.13!

A check on this result can be made by integrating it over
n.0; that yields precisely the estimate of^I 1

2~`!& in Eq.
~4.8!.

An inspection of Eq.~4.13! reveals that the factor in
square brackets there is just the ratio ofSI1(n;g) to

SI1(n;0). For frequencies much less thanR2/2pL, which
should be ‘‘large’’ sinceR2 is presumed to be large, Eq
~4.13! implies that thisenhancement ratiois given by

SI1~n;g!

SI1~n;0!
'11

~2pLg!2

R1R2
n2 ~R2@R1 ,g!1;n!R2/2pL !.

~4.14!

Evidently, asn increases from 0, the enhancement ratio
creases from 1 in aquadratic fashion. But Eq.~4.13! shows
that this quadratic increase withn eventually levels off; spe-
cifically, Eq. ~4.13! predicts that the enhancement ratio a
proaches the constant 11g2(R2/R1) asn→`.

In Fig. 7~a! we show logarithmic plots ofSI1(n;g) versus
n for L5R15kT51, R251000, andg values of 0.1, 0.2,
and 0.5. For each of theseg values, we plot as asolid curve
the exactspectral density function formula~2.37!, and as a
dashedcurve theapproximatespectral density function for
mula ~4.13!. For comparison, we have also shown theg50
spectral density function as a dotted curve. The approxim
formula is seen to work quite well for smallg. For largerg it
evidently underestimates the spectral density function at
higher frequencies; in particular, whereas Eq.~4.13! predicts,
as just mentioned, an→` enhancement ratio of
-

e
-

ll

-

-

te

e

lim
n→`

SI1~n;g!

SI1~n;0!
'11g2~R2 /R1! ~R2@R1 ,g!1!,

~4.15a!

it turns out that an estimate of this ratio that is much mo
accurate forany g is

lim
n→`

SI1~n;g!

SI1~n;0!
'

1

12g2 S 11
g2~R2 /R1!

12g2 D ~R2@R1!,

~4.15b!

which clearlydivergesasg→1. The right side of Eq.~4.15a!
gives the high-frequency upshifts of thedashedcurves in
Fig. 7~a!, while the right side of Eq.~4.15b! describes very
closely the high-frequency upshifts of the~exact! solid
curves in Fig. 7~a!. In Fig. 7~b! we plot, against linear axes
the ratioSI1(n;g)/SI1(n;0) for the sameg values examined
in Fig. 7~a!, again showing the predictions of the exact fo
mula ~2.37! as solid curves and the predictions of the a
proximate formula~4.13! as dashed curves. The parabo

FIG. 7. Shown in~a! are logarithmic plots ofSI1(n;g) for
L15L25R15kT51, R251000, andg50.1, 0.2, 0.5, and also, fo
comparison,g50 ~as the dotted curve!. In each of theg.0 cases,
the solid curve shows the exact function~2.37! and the dashed
curve shows the approximate function~4.13!. Shown in ~b! are
linear plots of the ratioSI1(n;g)/SI1(n;0) as computed from the
exact formula~solid curve! and the approximate formula~dashed
curve!. The parabolic shapes for frequencies!R2/2pL'159 are
the ‘‘quadratic enhancement effect’’ described by Eq.~4.14!.
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shapes of these curves at frequencies much less
R2/2pL'159 illustrates the ‘‘quadratic frequency enhanc
ment’’ effect predicted by formula~4.14!.

C. The enhanced Johnson noise

In this section we shall argue that, subject to some imp
tant caveats, we canapproximatelydescribe the effect on th
current in loop 1 of the weakly coupled fast noise in loop
as a ‘‘multiplicative enhancement’’ of the high-frequen
noise amplitude in loop 1.

We have seen that, under the conditions~4.1!, the current
in loop 2 behaves approximately as it would in the abse
of loop 1; soI 2(t) is approximately an Ornstein-Uhlenbec
process with relaxation timet25L/R2 and diffusion constan
c252kTR2/L

2. Let us suppose that, as a result of satisfy
condition ~4.1b!, R2 is so large that the relaxation timet2 is
very smallon time scales of practical interest. Then, sin
t2c2

1/25(2kT/R2)
1/2, we can invoke the zero-tau limit theo

rem for Ornstein-Uhlenbeck processes@19# to conclude that

I 2~ t !'S 2kTR2
D 1/2G2* ~ t ! ~g!1, R2 ‘ ‘ large’’ !, ~4.16!

whereG2* (t) is a Gaussian white noise process. Substitut
this approximation forI 2(t) into the white noise version o
the approximate circuit equation~4.3a! @which essentially re-
placesNi(t)(dt)

1/2 with Gi(t)dt# and recalling the definition
~2.6! of ai , we get

d

dt
I 1~ t !'2

R1

L
I 1~ t !1

~2kT!1/2

L

3„gR2
1/2G2* ~ t !1R1

1/2G1~ t !2gR2
1/2G2~ t !…. ~4.17!

Since the Gaussian white noisesG2* (t), G1(t), andG2(t) are
all statistically independent of each other@note thatG2* (t) is
proportional toI 2(t), which in turn is statistically indepen
dent of bothG1(t) and G2(t)#, then the linear combination
theorem for normal random variables allows us to write
last factor in Eq.~4.17! as

gR2
1/2G2* ~ t !1R1

1/2G1~ t !2gR2
1/2G2~ t !

5@g2R21R11~2g!2R2#
1/2G1* ~ t !

5R1
1/2~112g2R2 /R1!

1/2G1* ~ t !, ~4.18!

whereG1* (t) is yet another Gaussian white noise proce
Substituting Eq.~4.18! into Eq. ~4.17! gives us

d

dt
I 1~ t !'2

R1

L
I 1~ t !1

~112g2R2 /R1!
1/2~2kTR1!

1/2G1* ~ t !

L

~g!1, R2 ‘ ‘ large’’ !. ~4.19!

We now observe that Eq.~4.19! is what we would write
down as the circuit equation for loop 1if we were told that it
had resistanceR1, self-inductanceL, and an enhanced
Johnson emf
an
-

r-

e

g

e

.

V1* ~ t ![~112g2R2 /R1!
1/2~2kTR1!

1/2G1* ~ t !

~g!1, R2 ‘ ‘ large’’ !. ~4.20!

Comparing this with the formula~2.14! for the true Johnson
emfV1(t) in loop 1, we see that the inductive coupling wi
loop 2 appears to have enhanced the Johnson emf in lo
by a factor of~112g2R2/R1!

1/2. The expected effect of this
enhancement can be inferred by multiplying Eq.~4.19!
through by dt and examining the resultant formula fo
I 1(t1dt)2I 1(t): one finds thatthe very short time fluctua
tions in the current are augmented by a factor
~112g2R2/R1!

1/2.
But the foregoing conclusion must be qualified by seve

important caveats. First, as was noted below the exact
mula~2.37! for SI1(n), there isneverany induced increase in
the loop 1 noise atzero frequency. This can be seen qui
clearly in the present case from the plots ofSI1(n) in Fig.
7~a!, where theg.0 curves all lie on theg50 curve at
sufficiently low frequencies. It follows that the noise e
hancement suggested by Eq.~4.20! can applyonly to fluc-
tuations with ‘‘large’’ frequencies or ‘‘short’’ periods.

Second, although Eq.~4.19! appearsto have the form of
the Ornstein-Uhlenbeck Langevin equation, which in tu
would imply that I 1(t) is a univariate continuous Marko
process, this is emphaticallynot the case. The reason is th
the white noise processG1* (t) in Eq. ~4.19! is notstatistically
independent ofI 1(t), as it would have to be ifI 1(t) were
Markovian. One can verify this lack of statistical indepe
dence by directly computing thet→` average of the produc
of I 1(t) andG1* (t). Using Eqs.~4.18!, ~4.16!, ~4.7!, and the
fact that I 1(t) is statistically independent of bothG1(t) and
G2(t), one can show that

lim
t→`

^I 1~ t !G1* ~ t !&'2
g2R2

L~11R1 /R2!
S kT

2~R112g2R2!
D 1/2.
~4.21!

Evidently, this asymptotic covariance will not vanish, as s
tistical independency would require, unlessg2R2 were effec-
tively zero. But if g2R2 were effectively zero, then the en
hancement term in formulas~4.19! and~4.20! would alsobe
effectively zero. So Eq.~4.19! doesnot imply that I 1(t) is
any kind of univariate continuous Markov process.

The final important caveat concerning the enhanc
Johnson noise formula~4.20! concerns writing that formula
in the algebraically equivalent form

V1* ~ t ![@2kT~R112g2R2!#
1/2G1* ~ t !

~g!1, R2 ‘ ‘ large’’ !. ~4.22!

This form might seem to suggest that the Johnson noise
hancement can be attributed to an enhancement in the r
tance of loop 1 fromR1 to R112g2R2 . The fallacy of such
a view can be seen in three different ways: First, the appr
mate circuit equation~4.19! still regardsR1 to be the loop
resistance in the usual ‘‘dissipative’’ sense, inasmuch as
dissipative voltage still appears asR1I 1(t). Second, it is clear
from the generally valid conductance formula~2.39! that
R1

21 still plays the role of the true conductance of loop
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And finally, the approximate spectral density function~4.13!
of the equilibrium current in loop 1cannotbe obtained from
theg50 formula~1.7! simply by writing the resistance in the
latter formula asR112g2R2 ; in particular, SI1(n50;g)
should be independent ofg.

In spite of these caveats, the exact simulation results
sented next will show that the factor~112g2R2/R1!

1/2 in Eq.
~4.20! seems to provide a fairly reasonable estimate of
enhancement induced in thehigh-frequencynoise in loop 1
under the conditions~4.1!.

D. Simulation results

We show in Figs. 8 and 9 the results of some numeri
simulations of the loop currents for the parameter valu
L5kT51, R151, R251000, and several differentg values.
All of these simulations were carried out using theexact
simulation algorithm described in Sec. II E.

Figure 8 showsI 1(t) and I 2(t) for the effectively un-
coupled caseg51026 ~cf. Fig. 2!; here the two currents are
essentially autonomous Ornstein-Uhlenbeck processes
the same asymptotic varianceskT/L but very different relax-
ation timesL/R1 andL/R2. Figures 9~a!, 9~b!, and 9~c! show
I 1(t) for three additional simulation runs, which were ma
using the same time stepDt50.001 and the same uniform
random number seed, but differentg values of 0.1, 0.2, and
0.5. The companion trajectories ofI 2(t) are not shown be-
cause they look approximately the same as the one in Fig
as we should expect from the approximate circuit equat
~4.3b!. @The asymptotic one-standard deviation envelopes
both I 1(t) and I 2(t) are actually observed in these exa
simulations to be about 15% larger atg50.5 than at
g51026, in accordance with the predictions of the exact fo
mulas~2.18b!.#

Let us examine theI 1(t) trajectories in Figs. 8 and 9 in
the light of the correspondingSI1(n) curves in Fig. 7~a! and
the following values~for R151 andR251000! of the ap-

FIG. 8. Trajectories ofI 1(t) and I 2(t), as computed using the
exact simulation algorithm of Sec. II E, for the cas
L15L25R15kT51, R251000, g51026 ~i.e., essentially zero
coupling!, I 1(0)5I 2(0)50, andDt50.001. The dotted horizonta
lines show the theoretically predicted asymptotic one-standard
viation envelopes.
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proximate Johnson noise enhancement factor in formu
~4.20!:

g ~112g2R2/R1!
1/2

0 1
0.1 4.6
0.2 9.0
0.5 22.4

According to the spectral density function plots in Fig. 7~a!,
not much inductive noise is introduced at frequencies belo
2. And indeed, we see in theI 1(t) trajectories in Fig. 9 that
temporal fluctuations inI 1(t) with periods greater than
roughly 1/2 suffer little change with increasingg. But we can
also see that, asg increases, theI 1(t) trajectory gets increas-
ingly ‘‘fuzzed’’ over shorter time intervals. And we observe
that the consequent ‘‘thickening’’ of the trajectories is wel
described by the above values of the enhancement fa
tor: Theg50.1 trajectory in Fig. 9~a! is roughly four times
fatter than theg'0 trajectory ofI 1(t) in Fig. 8; theg50.2
trajectory in Fig. 9~b! is fatter again by a factor of roughly 2;

e-

FIG. 9. Trajectories ofI 1(t), computed exactly as in Fig. 8 and
with the same base random number sequence, but now with~a!
g50.1, ~b! g50.2, and~c! g50.5. The companionI 2(t) trajectories
for these cases all look approximately the same as the one in Fig.
Subject to qualifications discussed in Sec. IV C, the high-frequenc
‘‘fuzzing’’ of these trajectories is well described by the approxi-
mate ‘‘thickening’’ factor~112g2R2/R1!

1/2.
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and theg50.5 trajectory in Fig. 9~c! is fatter again by a
factor of roughly 2~even though thisg value is no longer
!1!.

V. SUMMARY AND CONCLUSIONS

We have used bivariate continuous Markov proc
theory to analyze the behavior of two wire loops of res
tancesR1 andR2, self-inductancesL1 andL2, absolute tem-
peratureT, and mutual inductanceM ~0<M,[L1L2]

1/2!.
Our major assumptions were that classical statistical ther
dynamics applies, and that the thermal noise in loopi ~i
51,2! can be described by a ‘‘thermal emf’’ of the form
2RiI i(t)1Vi(t), where I i(t) is the current in loopi and
Vi(t) is some zero-mean, temporally uncorrelated rand
process that is independent ofI 1(t) and I 2(t).

We found thatI 1(t) and I 2(t) must be normal random
variables, whose means, variances, and covariance ca
computed by solving the two matrix differential equatio
~2.12! and~2.13!. The Johnson emf’sVi(t) were shown to be
unaffected by the inductive coupling between the loops,
the familiar single-loop fluctuation-dissipation and Nyqu
formulas ~2.14! and ~2.15! remain valid. The single-loop
conductance formula~2.39! was also shown to hold indepen
dently of M , thus implying that the noise introduced in
each loop by the inductive coupling does not augment
effective resistances of the loops. An exact formula for
spectral density function of the equilibrium current in loop
was derived in Eq.~2.37!, and an exact algorithm for numer
cally simulating the loop currents was presented in Sec. I

Two special cases were examined in detail. In theidenti-
cal loop case (R15R25R, L15L25L, g5M /L), the
spectral density function of the loop current was found to
given by formula~3.5!. As is shown in Fig. 1, theM50
‘‘knee’’ at frequencyR/2pL, below which that function has
slope 0 and above which it has slope22, splits whenM.0
into two knees at frequenciesR/2p(L6M ). The noise re-
ics

nd
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-
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be
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e

mains white at frequencies belowR/2p(L1M ), and 1/f 2 at
frequencies aboveR/2p(L2M ). In between the two knee
frequencies a ‘‘1/f -type’’ noise behavior is briefly exhibited
A very slight but wholly unexpectedsuppressionof the loop
noise was found to occur at low frequencies@see Fig. 1~a!
and Eq. ~3.6a!#. The sum and difference curren
I6(t)[I 1(t)6I 2(t) were found to mimic the currents in tw
uncoupled loops with resistancesR, self-inductances
(L6M ), and temperatures 2T. As g→1, I1(t) becomes the
current in a loop of resistance12R and self-inductanceL at
temperatureT, while I2(t) approaches (4kT/R)1/2 times
Gaussian white noise. The increasingly wild, increasin
anticorrelated behavior ofI 1(t) and I 2(t) with increasingg
is shown clearly in the exact simulation plots of Figs. 2–

In the weakly coupled highly dissimilar loop cas
~R1!R2 , L15L25L, andg[M /L!1!, we found thatI 2(t)
is not substantially affected by the presence of loop 1. T
circumstance allowed an approximate analysis to be ma
which revealed that the spectral density function ofI 1(t) is
enhanced, for frequenciesn!R2/2pL, by the approximate
factor ~11an2!, wherea5(2pLg)2/R1R2 . This quadratic
noise enhancement effectis illustrated in Fig. 7~b!. Also im-
plied, and neatly verified by the exact simulations shown
Fig. 9, is an enhancement by a factor of~112g2R2/R1!

1/2 of
the high-frequency amplitude noise inI 1(t). This enhance-
ment can be characterized roughly as an enhancement in
Johnson noise in loop 1, provided it is understood that th
is no noise enhancement at low frequencies.
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