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Markovian modeling of classical thermal noise in two inductively coupled wire loops
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Continuous Markov process theory is used to model classical thermal noise in two wire loops of resistances
R; andR,, self-inductance& ; andL,, and absolute temperatuffe which are coupled through their mutual
inductanceM. It is shown that even though the currehiét) andl,(t) in the two loops become progressively
noisier asM increases from 0 toward its upper bourldllz)l’z, the fluctuation-dissipation, Nyquist, and
conductance formulas all remain unchanged. But changes do occur in the spectral density functions of the
currentsl;(t). Exact formulas for those functions are developed, and two special cases are examined in detail.
(i) In the identical loop caséR;=R,=R andL;=L,=L), the M=0 “knee” at frequencyR/2xL in the
spectral density function df (t), below which that function has slope 0 and above which it has staheis
found to split whenM >0 into two knees at frequencid®/[27(L*=M)]. The noise remains white, but
surprisingly slightly suppressed, at frequencies beRi27(L+M)], and it remains 1# at frequencies
aboveR/[27(L—M)]. In between the two knee frequencies a roughf“type” noise behavior is exhibited.

The sum and difference currents (t)=14(t) £1,(t) are found to behave like thermal currents in two un-
coupled loops with resistanc&y self-inductancesl(= M), and temperaturesT2 In the limit M—L, | ,(t)
approaches the thermal current in a loop of resistéﬁband self-inductanck at temperaturd’, while | _(t)
approaches (MT/R)Y? times Gaussian white noiséi) In the weakly coupled highly dissimilar loop case
(R1<R,, Li=L,=L, andM <L), I,(t) is found, to a first approximation, not to be affected by the presence
of loop 1. But the spectral density functionIgf(t) is found to be enhanced for frequenciesR,/27L by the
approximate factofl+a1?), wherea=(27M)?/R;R,. A concomitant enhancement, by an approximate factor
of (1+2M?R,/L?R;)*?, is found in the high-frequency amplitude noise gft). An algorithm for numerically
simulatingl 1(t) andl,(t) that is exact for all parameter values is presented, and simulation results that clarify
and corroborate the theoretical findings are exhibif8d.063-651X97)15103-0

PACS numbg(s): 05.40:+j, 02.50.Ga, 02.70.Lg, 72.78m

[. INTRODUCTION and CI', will generate random electromagnetic signals that
will augment the ambient thermal noise in the detector coils,
In this paper we seek to describe theoretically the effectshereby degrading their performance. The ideal prototype for
of classical thermal noise in two rigid wire loops of resis- this problem would of course be a singkeL loop placed
tancesR; and R,, self-inductanced ; andL,, and mutual over a beaker of salt water, and that problem is currently
inductanceM, the two loops being in thermal equilibrium at under study by this writer. But it turns out that a crude sur-
absolute temperature. rogate for the beaker of salt water is a secéad loop that
The practical motivation for this investigation stems from has a much greatd®/L ratio than the first; hence, the solu-
the well-known fact that thermal noise ultimately imposestion of the loop-loop problem for the limiting case
limitations on the performance abilities of very sensitiveR,/L,>R,/L, is expected to provide some helpful guide-
electronic devices that are required to operate under nonsposts for the solution of the much more complicated loop-ion
perconducting conditions. For example, the components of problem.
very densely integrated microcircuit are necessarily situated The double-loop problem is of course a generalization of
closely together, and their consequent high inductive couthe classic single-loop problem of a rigid wire loop of resis-
pling affords a broad avenue for the propagation of ambientanceR and self-inductancé in thermal equilibrium at ab-
thermal noise. The double-loop problem considered here ofsolute temperaturd. That problem had its origins in the
fers a simple prototype for studying the effects of inductively1928 works of Johnsofi] and Nyquisf{2]; it was analyzed
coupled thermal noise. in more mathematical depth in 1945 by Wang and Uhlen-
A less obvious practical system whose thermal noise serbeck[3], and it is nowadays a fairly standard textbook topic
sitivity might be illuminated by an investigation of the [4-7]. To collect some formulas that we shall need for later
double-loop problem is a medical magnetic resonance imageference, we begin by briefly summarizing the single-loop
ing (MRI) machine. The detector coils of a medical MRI results, using the terminology and notation of a recent tuto-
machine are typically placed very close to the human bodyial review[7].
being examined, and the random thermal motions of natu- Denoting the current in thB-L loop at timet by I (t), we
rally occurring solvated ions in the human body, mainly'Na begin with the assumption that the interactions between the
conducting electrons and the thermally vibrating atomic lat-
tice of the wire give rise to @ahermal emfof the two-term
*FAX: (619 939-1409. Electronic address: form —RI(t) +V(t). HereV(t), called theJohnson emfis
dtg@rattler. chinalake.navy.mil assumed to be a zero-mean randomly fluctuating quantity
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that is statistically independent &ft’) for all t'<t. The
circuit equation therefore reads

di(t)
—RI(t)+V(t)—L ——=0.

T (1.9

The further assumption that classical statistical thermody

namics holds, in the sense tHaL1?(t—=))= 3k T, wherek

is Boltzmann’s constant, then leads to the following specifi

results.

(i) 1(t) is a univariate continuous Markov process of the

Ornstein-Uhlenbeck type, with relaxation tirhéR and dif-
fusion constant RTR/L2. Given the initial condition
|(to)=io, and denoting byV(m,¢?) the normal random vari-
able with mearm and variances?, the solution to the single-
loop circuit equation(1.1) is

KT
|(t):/\/( ioef(R/L)(tfto)’ T (l_eZ(R/L)(tto))) (tzto)
(1.2

A numerical simulation of the loop current can be effected

by repeated application of the updating formula

1/2

kT
|(t+At)=|(t)e—<R’L>“+T(l—e—WLW) n, (1.3

wheren is a sample value o%(0,1); this updating formula is
exact for anyAt>0.

(ii) The Johnson em¥(t) is given in terms of the tem-
peratureT and the resistand® by the fluctuation-dissipation
formula,

V(t)=(2kTR YT (). (1.4

Herel'(t) is Gaussian white nois& temporally uncorrelated

normal random variable with mean 0 and variang@),

C
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1 0
R—1=k—T fo (I* (1) 1* (t+1"))dt’. (1.8

Our plan here is as follows. In Sec. Il we shall write down
the circuit equations for two inductively coupled loops, and
then use bivariate continuous Markov process theory to solve
those equations subject to the requisite thermodynamic
boundary conditions; in particular, we shall derive exact gen-
eral formulas for the spectral density functions of the loop
currents, and also derive an exact updating formula for nu-
merically simulating those currents. In Sec. Il we shall ex-
amine the implications of these general results for the case of
two identical loops. And in Sec. IV we shall consider the
case of two very dissimilar loops with weak coupling, this
being the study model for the previously mentioned loop-ion
problem. A brief summary of all our principal findings is
given in Sec. V.

II. THERMAL CURRENTS IN TWO INDUCTIVELY
COUPLED WIRE LOOPS

A. The double-loop circuit equations

Our analysis of the currents(t) andI,(t) in the two
loops begins with the usual hypothesis that the interactions
between the conducting electrons and the thermally vibrating
atomic lattice of wire loop (i=1,2) give rise to athermal
emfof the two-term form—R;l,(t) +V;(t), whereV;(t) is
assumed to be a temporally uncorrelated, zero-mean random
variable that is independent of bath(t) andl,(t). We call
R;l;(t) the dissipative voltagein loop i, and V,(t) the
Johnson emin loop i. The self- and mutual inductances are
by definition such that the instantaneous magnetic fluxes
@, (t) andd,(t) linking the respective loops are given by

(2.1

where § is the Dirac delta function. The spectral density According to Faraday’s law, any temporal variationdi(t)
function S, (v) of V(t), defined so thaB,(v)dv measures will give rise to an emf—d®;(t)/dt in loopi. The require-
the amount of V4(t)) in the positive cycle frequency inter- ment that the integral of the electric potential around each
val [v,y+dv), is given byNyquist's formula loop must vanish therefore gives us the pair of relations

(1.9 dd;(t)
“Rili(O+Vi() - —57— =

S/(v)=4kTR (»=0).

(i=1,2. (2.2

(iii) The equilibrium loop current
Substituting Egs(2.1) into Egs. (2.2 and then solving the

resulting pair of equations simultaneously fir; (t)/dt and
dl,(t)/dt, we obtain

I*(t)= lim

to*}*OC

1(t)=N(OKT/L) (1.6

has spectral density function

dly(t) LRy MR, L, M
4kT 1 gi = o rOF == O+ == Va(t) - — Vy(t),
==\l o2 =
SO= g \Tr@murz =0 @7 (2.33
S,(v)dv measures the amount 6F* ()} in the frequency ~ dl2(t) _MR, LR,

M L,
l(t)— I2(1) = —= Va()+ —= Va(1),

interval [v,p+dv). A log-log plot of S;(v) shows a “knee” dt K K

at frequencyR/27L, below which the curve has slope 0 and (2.3b
above which it has slope 2.
(iv) And finally, the autocovariance of the equilibrium where we have introduced the parameter
current, namely1* (t,)1*(t,)), is related to the loop resis-
tanceR through theconductance formula k=L,L,—M?2. (2.9
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Energy considerations can be shoB] to require that directly using the formal calculi of Ito or Stratonovich, as has
M2<L,L,, sox is strictly positive. been done by Gardingé] and Honerkamp11]. All methods
Since the Johnson emfig;(t) andV,(t) in Egs.(2.3) are  of solution yield mathematically equivalent results, but those
hypothesized to be independentlgft’) andl,(t’) for all  results are rendered in different ways. The choice of a solu-
t’' <t, then Eqgs.(2.3 evidently constitute a set of “memo- tion method depends to a large extent upon what one intends
ryless” time-evolution equations for those currents; i.e., theyto do with the solution.
imply that the future behavior of those currents depends on We shall use here a method of solution that is essentially
their past values only through their present values. It followsequivalent to the Ito method, but which, being less encum-
that the variable$,(t) andl,(t) constitute abivariate con- bered with mathematical formalism, yields immediately
tinuous Markov processand accordingly must satisfy a bi- computable results using familiar modes of mathematical
variate Langevin equatidr8,5,6,9. But Egs.(2.3) will be of  reasoning. This approach is predicated on the fact, empha-
the canonical bivariate Langevin form if and only\f;(t) sized in Ref[9], that the continuous, memoryless functions
and V,(t), which have been assumed to be independent of; andl, defined by Egs(2.7) are not in fact differentiable,
[,(t") andl,(t") also fort’ =t, have the mathematical forms and that the real meaning of Eq2.7) is that the processés
andl, evolve in time according to the following “infinitesi-

Vith=aI'i(t) (i=12. (2.5 mal updating” formulas:
Here,a, anda, are constants, an;(t) andI',(t) are sta- L,R, MR,
tistically independent Gaussian white noise processes. Only l1(t+dt)=1(t)— —— I ()dt+ ——I(t)dt

with such Gaussian white noise involvement will the memo-

ryless time evolutions of(t) and |,(t) dictated by Eqgs. L,oa, Ma,

(2.3) be self-consister{9]. T Ny (t)(dt)¥2— o No(t)(dt)*?
As regards the constardg anda,, we shall prove in Sec.

Il C that agreement with classical statistical thermodynamics (2.8

will be obtained if and only if

R L,R
L(tdt— =2

K K

a;=(2kTR)¥? (i=1,2. (2.6) lp(t+dt)=15(t)+ I(t)dt

This is equivalent to the uncoupléd=0 result in Eq.(1.4). ap . L12e s

The plausibility of Eq(2.6) for M #0 may not be universally o Nu()(d) =+ ——= Np(1) (d) ™=

acknowledged, as some might maintain that the noise that is

inductively fed into loop 1 from loop 2 acts to augment (2.8b

V,(t) and its spectral density functio8,(v), and thereby

augments everR, through the Nyquist formuld1.5. The Here,dt is anon-negative infinitesimal variahlée., a real

arguments in Sec. Il C that derive E@.6) will show that  variable that is confined to some intenj@e] wheree is

does not happen. But for now, we shall simply regajéaind ~ Some arbitrarily small positive number, aNg(t) andNy(t)

a, as two constants whose values remain to be determinedre statistically independent, temporally uncorrelated normal
With Egs. (2.5), the circuit equationg2.3) now assume random variables with means 0 and variances 1. We shall

the canonical bivariate “white-noise” Langevin form refer to Eqs(2.8) as the “standard-form” bivariate Lange-

[3,5,6,9: vin equation. All subsequent results in this paper are derived

from Egs.(2.8); however, in the interest of brevity, we shall

dlq(t) L,R, 2 L,a; omit most of the computational details. We shall generally
g = o O+ == L)+ ——= T4 (1) assume that Eq$2.8) are subject to the “sure” initial con-
ditions
Ma2 1t 2.7
« T (278 li(t)=i10 and I(to)=iz. 29
dix(t) MRy L;R, The well established resyl,6,10,11 thatl;(t) andl(t)

a;
dt & 1 P 12() = T Iy (t) arenormalfor all t>t is easily deduced from Eq&2.8) by
appealing to the well-known theorem in random variable
theory [12] that any linear combination of normal random
variables, whether or not they are statistically independent, is
also normal. Application of this theorem to E(¢2.8) for
t=ty shows that ,(t,+dt) andl,(ty+dt) are both normal,
and the result for alt>t, follows by induction.

Equations(2.7) are of a type that can be solved exactly, Any pair of normal random variables is fully character-
but several solution methods exist. One way of proceeding ized by giving their two means, their two variances, and
to write down the equivalent bivariate forward Fokker- their covariance. Differential equations for these time-
Planck equation, and then solve that equation for the joinvarying quantities can be obtained by algebraically manipu-
density function of ;(t) andl,(t); this is the approach taken lating Eqgs. (2.8) and then averaging, using the facts
by van Kamper{5] and Risken[10]. Another way of pro- that (N;(t))=0, (NZ(t))=1, (N;(t)N,(t))=0, and
ceeding is to solve the stochastic differential equat@:)  (1;(t)N;(t+t"))=0 for all t’=0; these relations all follow

Ly

a
+ == Ta(). (2.70

B. Solving the circuit equations
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from the definition ofN;(t). Thus, by averaging Eq2.89
and then passing to the limitt—0, we get

L2Ry

K

d MR,
gi ()=~ (1)) + —— (I2(1)).

An analogous equation fod(l,(t))/dt follows from Eg.
(2.8b. By averaging the square of E(2.8a and then pass-
ing to the limitdt—0, we get

L2Ry

K

d ) MR,
gi{hi)y=-2 (1) +2——=(11(D1 (1))
K
L2a3+M?a3

e
An analogous equation fod(l 3(t))/dt follows from Eq.
(2.8b. And by averaging the product of Eq§.89 and
(2.8b and then passing to the limitt—0, we get

M

R MR
S0+ == (15(0)

K

d
gt {a(1a(0)=

LR+ LsR
- = ()

M(L,a3+La?)

K2
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Together with thenormality of 1,(t) andl,(t), the solution
[my(t),m,()]"T to Eq. (2.12 for the initial condition
[mM(0),m,(0)]"=[i10i.d ", and the solution §,(t),c(t),
v,(t)]" to Eq.(2.13 for the initial conditions {;(0),c(0),
v,(0)]7=10,0,0]", provide a complete solution to E¢&.7)

or (2.8). A variety of formal renderings of that solution can
be found in the literatur§5,6,10,11, but none of these are
especially convenient for our purposes here. We shall exam-
ine the asymptotict —t,—o0) solutions in Sec. Il C, and de-
velop full solutions in Sec. Il E.

C. Thermodynamic, fluctuation-dissipation,
and Nyquist relations

Now we shall establish that the results of the preceding
subsection will be consistent with classical statistical thermo-
dynamics if and only if the constants, and a, have the
values asserted in Eq$2.6). This will imply, because of
Egs.(2.5), that the Johnson emf’s in the two loops are given

by

Vi(t)=(2kTR)¥Ii(t) (i=1,2), (2.14
which is the standard single-loop fluctuation-dissipation for-
mula (1.4). A well-known spectral analysis theorefi3]
then implies that the spectral density function\g{t) will
be given by

Sy, (v)=4KTR

(v=0;i=1,2), (2.1

Using these equations, it is straightforward to show that if wevhich is the standard single-loop Nyquist form@aS). The

define the constants

(Ill:K_leRl, a12=—K_1MR2,

(2.10
wp=— kM Ry, axn= K_lLle,
and
b=« "?(L3ai+M%)),
b,=— Kk 2M(L,a5+L,a?), (2.11)

by=«"2(Laj+M?ad),

then the two meanm;(t)=(l,(t)) are the solutions of the
differential equation

d
dt

my(t)
my(t)

@12
(%7

a1y
a1

(2.12

ml(t)}
my(t) |’

while the two variances; (t)=(1 2(t))—(l;(t))? and the co-
variancec(t)=(1,(t)1,(t)) —(11(t)){1(t)) are the solutions

of the differential equation
Zalz 0 Ul(t)
(@t az) ap || ct)

d va(t) [2ay;
at c(t) |=—| an
vo(1) 0 2ay; 2ap,| L vo(t)

(2.13

fact that the intrinsic Johnson noise formuléz14 and
(2.15 do not involveM tells us thatthe inductive coupling
noise does not affect the intrinsic resistances of the loops
This finding will be reinforced in Sec. Il D.

The condition that ;(t) and I,(t) must behave, in the
limit t—ty,—, in accordance with classical statistical ther-
modynamics implies that;(«c) and |,(«) must be random
variables with a Maxwell-Boltzmann distribution that is ap-
propriate to the system temperatufe It follows that the
average of any functioh of I4(e) and| () must be com-
putable as

(03 1ao=2 | die [ dizhini)

xex;{ - E(Ikl_l'_IZ)),

wherek is Boltzmann’s constanE(i,,i,) is the total energy

of the system when the currents in the respective loops are
equal toi; andi,, andZ is such that1)=1. We shall assume
thatE(iq,i,) is given by the usual classical electromagnetic
formula[8],

(2.19

E(i1,ip)=2Lqi2+3L,i5+ Miyi,.

(2.17

Some straightforward but slightly tedious computation will
show that, for this energy formula, E€R.16 gives

(11(2))=(12())=0,

(13(%)) =Kk "LL,KT,

(2.183

(13())= k" 1L,KT, (2.18h
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(11() 1 5())=— Kk IMKT. (2.189 (2a1;,—y) 2a;, 0
= a a1t as— o
Equations (2.18 constitute a set of “thermodynamic Qu() 021 (s zazz V) (2a 13 ¥)

boundary conditions” for the circuit equation.8). They 21 2
also allow us to compute the average equilibrium energy of =— %3+ 9?3k LR+ L,R))
the system, —1r -1 2

—y2k [k (L1Ry+L,yRy)“+2RR,]
_1 2 1 2
<E(Il(oo)1|2(oo))>_2L1<|1(oo)>+2|—2<|2(m)> +4K72R1R2(L1R2+ Lle), (223)

+ M({I | . 2.1 . . —
(ha(==)12(=) 219 where again the second equality follows from the definitions
The conventional way of interpreting the three terms on thd2-10 of the a;;’s. Since this polynomial is strictly positive
right here is to say that the first two terms represent thdor all ¥=<0, and approaches as y—, then it has no
average energy “in” each loop, and the third term represent§€gative roots and at least one positive root. That the other
the average “interaction” energy between the loops. Fromiwo roots will be real(and hence positiyecan be verified

Egs.(2.19 it is easy to see that numerically in any specific case.
Since all the eigenvalues of Eq2.12) and(2.13 are real
L 5 L 5 kKT L,L, and positive, then those equations must have constant as-
zLa(17())=2Lo(I5()) = 2 LL,—M2 (2203 ymptotic solutions. Clearly those solutions must satisfy
mg(o° 0
2 a1 12 1() _ (2.24
M{l1()l5(%))=—KT —————.  (2.20h @y agyl[my(e)] [0
L.L,—M
and
So if M =0, the equilibrium mean energy of each individual
loop is 3k T, and the equilibrium mean interaction energy is 2aq 201, 0 v1(%) by
zero. Aﬁc’zM is increased from O towards its maximum value az  (aytaz)  ap || c(») |=|by|. (2.25
(L,L,)*% the mean energies of the individual loops increase 0 209, 209, | vo(®) by

in unison towards+o, while the mean interaction energy
decreases toware-~. But summing the three energies in Consider first the pair of algebraic equatiof@24). Since
Egs.(2.20 shows that the equilibrium medotal energy of the determinant of coefficients iQ,,(0)=«x 'R;R,>0,
the double-loop system is, fanyvalue ofM, always equal then Cramer’s rule implies that the only solutions are
to kT, just as we should expect.

The thermodynamic relation®.16 and(2.17) imply that my(o0) =my()=0. (2.26
[ 1(0) andl 4(0) should benormal and as noted in Sec. Il B, ) ) L
that requirement is surely satisfied. It remains only to show>© the thermodynamic requiremen(®.18a are satisfied.
that the differential equation®.12) and(2.13 have asymp- Given that fact, the remaining thermodynamic requirements
totic solutions that satisfy the thermodynamically required(2'18b and(2.189 can be written simply as

moment relation$2.18. The existence of finite, nonoscilla- LKT L.kT MKT
tory t—o solutions to Egs.(2.12 and (2.13 hinges on V(%)= 2 . Up()= ! , c(o)=— )
whether the square matrices in those equations have eigen- K K K
values that are alleal andpositive The eigenvalues, and (2.27)

A2 ththe Sq“arfe.matr':ix in the first moments equatidld  ging the definitiong2.10 and (2.11), straightforward but
are the roots of its characteristic polynomial, rather tedious algebra reveals that the set of three coupled
equationg2.25 has solutiong2.27) if and only if a; anda,

Qn(N)= (@11~ A) al_z)\ have the valueg2.6). We conclude that Eq92.6) are a
@21 (az—A) necessary and sufficient condition for our Markovian model-
=M= Ak YL R+ LR+ kTIRYR,, ing to be consistent with classical thermodynamics. Hence-

forth, we shall regarda; as simply an abbreviation for
(2.2]) (szR)UZ.

where the second equality follows upon invoking the defini-
tions(2.10 of the ;;’s. Using the quadratic formula, we find
that the eigenvalues,; and\, are given explicitly by

D. Spectral densities of the currents
and the conductance formulas

We define the equilibrium loop current (t) and |3 (t)
by

(2.22 IF ()= lim i) (i=12. (2.28

tg——o

(L1Ro+L,Ry) F[(L1Ry+L,oRy)?— 4kR;R,] M2
12— 2k

and it is not hard to show that these two eigenvalues are

indeed always real and positive. The eigenvalugsy,, and  Sincel{ (t) is basically the same dg(), then the analysis

s of the square matrix in the second moments equatiofn the preceding section shows thidt(t) is a stationary,
(2.13 are the roots of its characteristic polynomial, zero-mean, normal random process whose variance is given
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by the constant value;(«) in Egs. (2.27). It follows that appealing to the generic solution for a vector differential
I (t) will have a spectral density functio®, (v), which is equation of this forn{14], we ultimately find that

such thatS, (v)dv gives the amount ofl ¥2(t)) =v;(x) due
to frequencies in the positive infinitesimal interyajv+dv).

In this section we shall derive an explicit formula for
S|1(v); the companion formula foS,Z(v) will then follow

by a simple -2 interchange of all indices. KT L,+Mnpy

zi(t)=s,e M +s,e7 M (t'=0), (2.39

wheres,; ands, are defined by

Denoting the autocovariance bf(t) by 1= TH (RURy) 72 (2.353
zy(t)=(1T(OIT(t+t))= lim (I (DI (t+t)), (2.29 LkT
to——= Sy= P —Sq, (235b

then according to elementary spectral thddr§, S|l(v) can )
be computed as the positive-frequency Fourier amplitude o\fv'th

this autocovariance: (Lle_ L2R1) _ [( L1R2_ L2R1)2+ AM 2R1R2]1/2

- 7 2MR;
S|1(V)=4f0 z,(t")cog27ut)dt’  (v=0). (2.30 (2.36

, ] Substituting Eq(2.34) into Eq.(2.30 and then perform-
To computez,(t') for use in Eq.(2.30, we return to the 4 the straightforward integration ovef, we obtain the

two circuit equations2.8). We first replace by t+t" anddt  {ojiowing formula for the spectral density function of
by dt’. Then, multiplying each of the resulting two equatlons|*(t):

through byl ;(t) and averaging, we get !

S1/Nq Sy /N5
(D) (t+t"+dt’)y =1 (D) (t+1t’ = =
(H(O14( )y =(la(D11(t+1) S, )= T o T T amig?| (PO
— kIR () 14 (t+t7))dt (2.37
+ kT IMRY(1 ()1 (t+1"))dt’, Again, \; and\, are as given in Eq2.22), ands; ands, are
given by Eqgs(2.35 and(2.36). As a rudimentary check on
(I (D)1t +t"+dt’) =1 (D)1(t+1")) this result, one can easily verify, using Eq2.35H and

_ , , (2.18D, that the integral of Eq2.37) over all v>0 yields the
T IMR (I (D1 (t+t))dt required equilibrium current intensity 3()).
— kIR (D)1 (t+t7))dt. We shall examine the implications of E@.37) in detail
for two special cases in Secs. Il and IV. But two general
Taking the limitdt’—0, and recalling the definition®.10,  results should be noted now. Both of these results derive
we obtain from the fact that the integral of the intermediate formula

(2.34 over allt’>0 gives[15]
i[(ll(t)ll(wt’))}:_ (Il(t)ll(t+t’))}
dt’ [(1(DI(t+1")) (D1 (t+t)) ]

Finally, taking the limit(t—ty)— and introducing the aux-
iliary function First, by settingy=0 in Eq.(2.37 and then invoking the last
, . , _ , part of Eq.(2.38), we see tha§, (v=0)=4kT/R,, indepen-
(=101t )= lim (I (Ol(t+1")), (2.3) dently of M; thereforethere is no inductive augmentation of
fo= = the noise in the loop current neas=0.
Second, if we simply combine EqR.38 with the defini-
tion of z;(t") in Eq. (2.29, we get

a1 ag2
a1 Qap2

s, kT

z(t")dt'= —+ —= —. 2.3
[Cawar=2e 2L (2.38

we get

d

dt’

a1 12
Q1 A

(2.32

Zl(t/)}
Z,(t")

Zl(t,):| 1 )
Zy(t")] R1‘1=k—T fo (IF (O (t+1"))dt’. (2.39

We shall computez;(t’) for Eq. (2.30 by solving Egs. o .
(3.32 subject to the initial conditions This is the standard single-loop conductance formal&).

Its validity here tells us that, even though the behavior of the
2,(0)=k"1L,kT, z,(0)=—«"MKT, (2.33 currentin loop 1 is substantially altered by the presence of
loop 2, the specific property of that current that characterizes
which follow immediately from Egs.(2.29, (2.31), and theresistanceof loop 1 isnot altered. This finding provides
(2.27). additional support for the inference drawn earlier, in connec-
The eigenvalues.; and \, of the square matrix in Eq. tion with Egs.(2.14 and (2.15), that the noise transmitted
(2.32 are given in Eq(2.22. Those eigenvalues areal, = between the two loops through their inductive coupling does
positive and in theM #0 case of interest heréjstinct By  not change the intrinsic resistances of the loops.
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E. Monte Carlo simulation of the currents where

The key to numerically simulating the currents in the
loops lies in being able to compute, from the values of the

currents at any time, their values at any later time+ At. A Compute the eigenvalugs and eigenvectorsi;,w;,,wis] '
simulation is then effected by starting with the initial current (j=1 2 3 of the square matrix in Eq42.13, and compute the
values (2.9 and repeatedly applying the “updating algo- expansion coefficient§3;} of b=[b;,b,,bs]" in the eigen-
rithm” to generate samplings of the currents at timgs At,  vectors{w;} by numerically solving the three simultaneous
to+2At, to+3At, etc. The simplest updating algorithm is algebraic equations

the pair of formulas obtained by replacing, in the standard

form Langevin equation§2.8), the infinitesimalvariabledt 3

by thefinite variableAt, but that updating algorithm will be ijZ Biw;; (j=1,23. (2.42
accurate only ifAt is “sufficiently small.” We present now =t

an updating algorithm that is practically as fast, ye¢xact Compute finally the auxiliary quantitigd.4]
for any positive value ofAt.

Up=Ug3Uzp— Ugolp;. (2.41b

Assuming that the values df(t) and|,(t) are known wij=eMMu;  (i,j=1,2), (2.43
then by our results in Sec. Il By (t+ At) andl,(t+At) will
be normal random variables, whose means;(At) and _ 1—e 7t .
m,(At) are thet=At solutions to Eqs(2.12 for the initial vi=pi| Wi (Li=123, (244

conditionsmy(0)=1,(t) andm,(0)=1,(t), and whose vari-

ancesv,(At) and v,(At) and covariancec(At) are the 3 3 8

t=At solutions to Egs.(2.13 for the initial conditions vl(At)=2 Vi1, C(At)zz Vi, UQ(At)ZE Vi3,
=1 =1 i=

v1(0)=c(0)=0v,(0)=0. If we know the values of those five 1 24
moments, then a simple result in random variable theory on (2.49
the representation of two arbitrarily correlated normal ran-ynq
dom variables[16] allows us to computd ;(t+At) and
[,(t+At) as c(At)
A=0TAAY, A=
I (t+ At =my(At) +u 2 At)n,, (2.409 1
CZ(At) 1/2
c(At = _——
Lot A= my(A) + e Ao (”2(“) vlmt)) (249
v1(At)
2(AD)| V2 Step 3 With |, andl, representing the values of the loop
¢ (A1) currents at the “present” timg, initialize these variables by
+{ va(At) ny, (2.400 . . :
vi(At) settingt=0, |;=i,0, andl, =i

- _ Step 4 Begin the main loop of the simulatidiy plotting
wheren; andn, are two statistically independent samples of 5t the points(t,|,) and (t,1,).

the random variablev(0,1) [17]. . _ Step 5Increase by At. Terminate the simulation if the
To implement the foregoing updating procedure, we eVi-neyt exceeddqp.
dently need to compute explicit expressions for theAt Step 6 Generate two independent sample valogsand

solutions m;(At), v;i(At), and c(At) to Egs.(2.12 and  p, of the unit normal random variabl&f0,1) [17].

(2.13. This can be accomplished by straightforwardly imple- ~ stey 7 Update the loop currents by first computing
menting the generic solution formula for a first-order, linear,

matrix differential equatiof14]. The result is the following &E=0i111+ 051, (i=1,2), (2.47
exact simulation algorithm _

Step 1 Specify values for the physical parametBss L,,  then computing14]
R,, L,, M, and kT, taking care to ensure that B o
0<M<(L,L,) 2 Specify the initial values,, andi ,, of the M =&ipaitEua (1=1.2), (2.48
loop currents. And specify values for the time-stepand a

stopping timetop and finally putting, in accordance with E¢2.40),

Step 2 Evaluatequantities that will not changduring the l,=m;+A;n,, (2.493
course of the simulation: Computefrom Eg. (2.4), a; and
a, from Egs.(2.6), the q;;’s from Eqgs.(2.10, and theb;’s l,=my+Aon;+Azn,. (2.499
from Egs.(2.11). Compute the eigenvaluas and eigenvec-
tors [u;1,Ui,]" (i=1,2 of the square matrix in Eq2.12, Step 8 Return to Step 4.

and in preparation for computing the expansion coefficients Although the preparatory computations in Step 2 are nu-
{&} of m(0)=I(t) in the eigenvectorfy;}, compute the quan- merous and somewhat involved, the computations that must
tities be carried out at each time stép Steps 5-Y are few and
relatively easy. So this exact simulation procedure will be
011=Uxs/Ug, 6015= — Uy /Ug, fast. Its execution time will be quite comparable to that of
(2.413  the approximate first-order updating formulas obtained by
021=—Ugo/Ug, 6=Uq11/Ug, finitizing dt in the standard-form Langevin equatiofs8).
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U%m»ZEI ! i=1,2 3.3
(a) | LEZ (I 1)! (a

“o. kT
_smusw | 1) =~ T 1o

;. (3.3

S;(v:g)
w

These equations show thatjfis increased from 0 towards 1,

then the current in each loop beconiesreasingly noisyand

: . . increasingly anticorrelatedindeed, the correlation coeffi-

0 01 02 03 04 035 cient of the loop currents can be seen from E§s3) to be

frequency v equal to— g, which approaches the fully anticorrelated value
of —1 asg approaches its upper limit 1. In this section we

10 ' ' shall examine some of the manifestations of these predicted

) behaviors.

A. Spectral density of the current

For the parameter values in Ed8.1) and(3.2), we find
that the eigenvalues; and\, as given by Eqs(2.22 be-
2| g=08— 2L e come

S;(v;8)
>
[y}
5
¥
T

. R
2nL AN A 1= 7T 7 5 and M\ 2=

0 ‘ [(1+g) (34

R
L(1-9)°

frequency v
And upon chasing through the algebra of E¢2.35 and

FIG. 1. Linear(a) and logarithmic(b) plots of S,(»;g) for the ~ (2.36, we find that formula(2.37) for the spectral density
identical loop case witlR=L=kT=1 andg values 0, 0.4, 0.8, and function of the asymptotic current in either loop becomes
0.999. In(a), note the slight noissuppressiorwith increasingg at
low frequencies. Inb), note how the knee frequen®/27L in the
g=0 curve splits, forg>0, into two knees at frequencies 2kT 1
M=L/27R(1+g) and\,=L/27R(1—g), in between which a brief S(vi9)=—— 3
“1/ f-type” noise behavior is exhibited. R ALFL27LyIR)(1+0)]

1
T 2rL /R (A-g)"

(3.9
Note that both updating algorithms require exactly two unit
normal random numbers at each time step. Simulation results

obtained using the exact algorithm will be exhibited for some - .
specific cases in Secs. Il and IV where we now note explicitly the dependency of this func-

tion on the coupling constarg.
In Fig. 1 we show linear and logarithmic plots §f( v;g)
for R=L=kT=1 andg values 0, 0.4, 0.8, and 0.999. As can
be seen in Fig. (b), the “knee” in the g=0 curve at fre-
In this section we consider the identical loop case inquencyR/27L splits for g>0, intotwo knees at frequencies
which \1/27r and\,/27. Below the lower knee frequeney/27 the
logarithmic curve still has slope 0, and above the upper knee
Ri=R,=R and L;=L,=L. 3.9 frequency\,/27 it still has slope—2. But for frequencies
lying between the two knee frequencies, the logarithmic
curve is reasonably well approximated by a straight line
whose slope is between 0 andl. For example, in the loga-
g=MIL, (3.2 rithmic plot of S,(»,0.8 [the solid curve in Fig. (b)], the
curve in the frequency decade between,/27
which evidently goes from 0 to 1 as the mutual inductaiice =1/2m(1+0.8)~0.09 and\,/27=1/2m(1-0.8)=0.8 is found
goes from its lower limit O to it§unattainableupper limitL.  to be reasonably well approximated by a straight line of
So k=L2(1—g?), and the asymptotic variances and covari-slope —0.35.
ance of the currents in the loops, as given in general by Eqs. Some straightforward algebra leads to the following low-
(2.18, now read frequency and high-frequency approximations to &95):

lll. THE CASE OF IDENTICAL LOOPS

It will be convenient now to measure the inductive coupling
between the two loops by
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4kT1 277L21 22| ¢ P
5 . ? — T ( +g )1/ or V<)\l T, (36@
(O~ 11g2 | KTR 1 f " (3.60)
m ;2?;2 or v> ol 2.
|
Equation (3.6 confirms the assertion that the high- dl.(t) R [2k(2T)R]Y?
frequency behavior o (v;g) is 1/ It also gives us, as the at - Lizg '* t)+ “Tixg +(1).
factor in parentheses on the right-hand side, the “high- N N (3.10

frequency enhancement ratioS (v;g)/S,(v;0). For g<1
this ratio is quite small, being approximately equal to Equations(3.10 are interesting for several reasons. First,
1+3g% however, the ratio evidently approachesasg—1. by comparing them with the canonical white noise form
The ratio measures the high-frequency “parallel displace-Ornstein-UhlenbeckOU) Langevin equatiori19], we may
ments” of the curves in Fig. (b) for successively higheg  deduce that_(t) andl_(t) are OU processes with respec-
values. The consequent flattening out of the curvs, 6#;9) tive relaxation times and diffusion constants
at largev asg—1 is consistent with the divergence of the
mean loop energy in that limit implied by E¢.3a. _L(1xg) _ 4KTR

Equation(3.6a shows thatS,(0;g) is independent ofy; =TTR and Ci_[L(lig)]z' (313
thus, the inductive coupling has no effect on the noise level
in the loop atr=0. But a very intriguing effect is indicated Furthermore] , (t) andl _(t) arestatistically independeruf
by Eq.(3.6a at frequenciefust aboved. There, larger values €ach other, since their driving Gaussian white noise pro-
of g evidently diminish the noise in the loop. This “low- cessed’ (t) andI’_(t) are statistically independent. All this
frequency quieting” can be seen most clearly in the linears rather remarkable since, (t) and | _(t) are defined in
plots of Fig. 1a). It is a weak effect, but the fact that it terms of two processes,(t) andl,(t), that are themselves
occurs at all is very Surprising_ By s|mp|y bringing the two hot individually Markovian andhot statistically independent
loops closer together, and thereby increasinand thetotal ~ of each other. Since_<r, , then we may expedt (t) to be
noise in each loop, we will actualeducethe noise in each a “faster moving” process thah, (t). And recalling that an

loop over a restricted range of low frequencies. OU process with relaxation timeand diffusion constart is
asymptotically A{0,c7/2) [19], we may infer from Egs.
B. The sum and difference currents (3.1 that
. . ; 2kT
In the identical loop case, the sum and difference currents, | (too)= N( 0, L(1+g)) ' (3.12

Lo () =11(1) = 15(1), (3.7)

This shows that the asymptotic variance lof(t) will be

exhibit a very interesting behavior. By substituting the iden-larger than that of , (t), so we may expect_(t) to be a
tical loop parameter§3.1) and(3.2) into the general circuit more “widely ranging” process thah, (t).

equations(2)—(7), invoking the definitions ofx and a; in A second interesting feature of Eq8.10 emerges when
Egs.(2.4) and(2.6), and then computing the sum and differ- we recall, from Egs(1.1) and(1.4), that the equation for the
ence of the resulting two equations, we get thermal current(t) in a wire loop of resistanc® and self-
inductancel at absolute temperatureis
a1 R |, (t)+ —(ZkTR)m [T1(t)=T5(1)] di(t) R (2kTR)2
t  L(lxg) L(1= wy=r 2 -V __= >y
d (1xg) (1x9) e g - 'O+ —/—T, (3.13

| whereI'(t) is Gaussian white noise. Comparing E¢&10
with Eq. (3.13, we see that . (t) andl_(t) can be viewed
as thermal currents in twisolatedwire loops that have the
following respective physical parameters:

SinceT';(t) and I'y(t) are statistically independent norma
random variables with means 0 and variane¥8), then
I’y (t)=T,(t) will be zero-mean normals with means 0 and
variances &0), which is the same a#2 times a zero-mean
normal with mean 0 and variane¥0) [18]; thus, R.=R, L.=L(1*g), T.=2T. (3.14

Ty(t)=Ty(t)=2YT (1), (3.9 Finally, it is interesting to examine what happens to the
sum and difference currents in the limit that the coupling

wherel"  (t) andI"_(t) are Gaussian white noise processes.constanig approaches its upper limit 1. We can think of this
I',(t) andI'_(t) are, moreoverstatistically independendf  limit being realized physically by bringing the two loops
each other; because, as can easily be shown fron{3®, together so that they coalesce into a single loop. In the case
(', (t)"'_(t))=0, and a vanishing covariance implies statis-of 1 _(t), the limit g—1 would seem to imply, from Eqgs.
tical independence farormalrandom variables. Substituting (3.14), that |, (t) would become the thermal current in a
Egs. (3.9 into Egs.(3.8), we finally obtain loop with resistancé, self-inductance R, and temperature
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2T, but another interpretation is possible: If we mit1 in : : : : ! ' '

the “+" version of Eq. (3.10, then we see that the result 34 g=107}
can be written as Eq3.13 with R replaced byR/2; hence, f e IV .
+(t) becomes in the limig—1 the thermal current in a wire S oD AM e VT WY A iy
loop of resistancéR/2, self-inductance., and absolute tem- Tl \‘m’“’ \hjm M’WW )

peratureT. This is physically quite reasonable. A merger of
two identical loops should produce a loop with thkame
self-inductance and temperature, batf the resistance. And
clearly, the total current in the resultant loop should be the
sumof the currents in the two loops being merged. Accord-
ing to Eq. (3.12, I .(t) will have, in the limitg—1, an
asymptotic variance dfT/L; that is thesameas the asymp-
totic variances of 1(t) andl,(t) when they are uncoupled
(g=0). But the “+" version of Egs.(3.11) shows that the
relaxation time ofl , (t) will then be A /R, which istwice
that of1,(t) andl,(t) when they are uncoupled; so, although
I . (t) will fluctuate over the same range as the uncoupled
[,(t) andl,(t), it will do so at just half the speed.

To deduce the behavior of the difference currentt) in
the limit g—1, we observe from the “” version of Egs.
(3.19) that, in this limit,7_—0 andc_—o but

L)

1,

!\sﬁ’w “\We

i

Ww W

} } T

1p L(1—g) (4kTR)M (4kT> 112 ; I
_cl= =|— ] r
R L(1-9) R A 1-,..!? }W"’"J‘,\ w“w"‘ \j\ W T IW;'
S0 w!m/ —
remainsconstant We thus infer from the zero-tau limit theo- T ! W LW ¥

rem for OU processedl 9] that

4KkT\ M2
(?) L'(t),

wherel'(t) is Gaussian white noise. This in turn implies, by
a well-known theorem of spectral analydi3], that the
spectral density function df_(t) in the limit g—1 is

liml_(t)=
g—1

(3_15) 0 1 2 3

FIG. 2. Trajectories ofl 1(t), I5(t), I . (t)=14(t)+15(t), and
I _(t)=14(t)—1,(t), as computed using the exact simulation algo-
rithm of Sec. Il E for the identical loop case wiR=L=kT=1,
g=10"% (i.e., essentially zero couplingl ;(0)=1,(0)=0, andAt
=0.001. The dotted horizontal lines show the theoretically pre-
dicted asymptotic one-standard deviation envelopes. See the discus-
sion in Sec. Il C.

8kT
imS (v)=——
g—1

= =25(r=0,g=0) (»=0), (319

where the last step follows from E(B.5). L , . .
and likewise for thel . (t) and|_(t) trajectories. Asg is

steadily increased in the runs of Figs. 3—-6, thét) and
I,(t) trajectories remain statistically identical but become
Figures 2—6 show results obtained by using the simulaincreasing anticorrelated; by contrast, the(t) and | _(t)
tion algorithm of Sec. Il E to simulate the loop currents in trajectories become statistically different and remain statisti-
the identical loop case witR=L=kT=1 andg values of cally independent. We have used the same base uniform ran-
1075, 0.4, 0.8, 0.95, and 0.999. For each of the five simula-dom number sequence for all five runs in order to observe
tion runs we tookAt=0.001 andtg,,=9.0. As discussed in how various statistical idiosyncrasies in the trajectories
Sec. Il E, all of these simulations aexact in particular, no  change ag is increased. In thé;(t) andl,(t) trajectories,
errors arise becausst is not a true infinitesimal. In each the fluctuations evidently become increasingly wihdte the
run, the loop currents, (t) and|,(t) were generated first, vertical axis scale changes in Figs. 5 andtt at the same
using the aforementioned algorithm, and then the sum antime those two trajectories become transformed into near
difference currentd ,(t) and | _(t) were computed from mirror images of each other. A4=0.999, bothl(t) and
Egs. (3.7). The dotted horizontal lines in the plots bf(t) I,(t) are giving fair imitations of white noise, as we should
and 1,(t) indicate their asymptotic one-standard deviationexpect from their common spectral density curve in Fig. 1.
envelopes=[kT/L(1—g?)]"? as predicted by Eq93.33.  The emergingexactGaussian white noise behavior lof(t),
The dotted horizontal lines in the plots bf (t) and 1 _(t) predicted by Eqs(3.15 and(3.16), is evident in Fig. 6. But
indicate their asymptotic one-standard deviation envelopethe companiori . (t) trajectory has evolved into a compara-
+[2kT/L(1%=g)]*? as predicted by Eq$3.12). tively docile Ornstein-Uhlenbeck process, characterized, ac-
The plots in Fig. 2 forg=10"° show an essentiallyn-  cording to Egs(3.11), by the relaxation time 2/R=2 and
coupledpair of loops for which the ;(t) andI,(t) trajecto- the diffusion constankTR/L?=1. The difference between
ries are statistically identical and statistically independentthe “texture” of the | .(t) trajectory in Fig. 6 and the tex-

C. Simulation results
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FIG. 3. As in Fig. 2, and using the same base random number FIG. 4. As in Fig. 2, and using the same base random number
sequence, except thgt=0.4. See the discussion in Sec. Il C. sequence, except thgt=0.8. See the discussion in Sec. Il C.

tures of thel 1(t) andl,(t) trajectories in Fig. 2 reflects the

in loop 1. The loop-ion problem will be addressed more di-
larger (by a factor of 2 relaxation time ofl , (t). ! P p-ion p W !

rectly in a later paper; however, one of our objectives here is
to lay the foundation for some approximations that seem to
be required to solve that more complicated problem.
Since the exact formul&2.37) for the spectral density
function S,l(v) of 14(t) is too complicated to analytically
We now consider the case in which the resistance of looppproximate according to Eqgt.1), we shall begin by using
2 is very much larger than that of loop 1, while the inductiveggs, (4.1) to analytically approximate the original circuit
coupling between the two loops is very weak; specifically,equations2.8). Then we shall derive from the thus approxi-

IV. THE CASE OF VERY DISSIMILAR LOOPS
WITH WEAK COUPLING

we take mated circuit equations an approximate formula $pi(v).
Finally, we shall numerically compare the predictions of that
Li=Lp=L, (4138 approximate formula with the predictions of the exact for-
mula(2.37). We are interested here in not only the form and
R,>R,, (4.1p  accuracy of the approximate solution, but also the logical

thrust of the analysis that leads to it. We shall conclude by
using the exact simulation algorithm of Sec. Il E to see di-
rectly how the fluctuating character of the current in loop 1 is

SinceL,/R; measures the time scale of the intrinsic therma/@/tered by the presence of loop 2.
fluctuations in loopi, then those fluctuations will be much
more rapid in loop 2 than in loop 1. This problem serves as
a highly simplified idealization of the problem in which loop
2 is replaced by a beaker of salt water, since the rapid fluc- With Egs. (4.13 and (4.19, the definition ofx in Eq.
tuations in loop 2 mimic the rapid Brownian movements of (2.4) gives k~L2 Substituting this into the circuit equations
the Na" and CI” ions, which in turn induce a fluctuating emf (2.8) and again invoking Eq4.13, we get

g=M/L<1. (4.19

A. The approximated circuit equations
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FIG. 5. As in Fig. 2, and using the same base random number FIG. 6. As in Fig. 2, and using the same base random number
sequence, except thgt=0.95. See the discussion in Sec. Ill C. sequence, except thgt=0.999. See the discussion in Sec. lll C.

Ry gR,
L (t+dt)~14(t)— % 1 (D dt+ gTR2 I,(t)dt Li(t+dD~15() = 7= (D dt+ == (D) dt
ﬂ 12 9% 1/2
% No(t)(dt)¥?,  (4.29 T Ny (t)(dt) No(t)(dt)™s,  (4.3a

ﬂ 1/2_
+ T Na(0)(d 2= =

[y(t+dt)~1,(t)— % I,(t)dt+ % N,(t)(dt)¥2  (4.3b

gRy R2
2t dy=lz(D)+ L (bt L '2(tdt Before we proceed to examine the implications of the
ga a approximate _circui'g equationg.3), we want to take note of
— 2 NL(D(d)Y2+ 2 Ny(t)(dt)¥2 (4.2  another way in which those equations might have been ob-
L L tained. By using the definition of; and the fact that
Ni(t)(dt)1’2=1“i(t)dt, it is not hard to show that Eq$4.3)
can be written equivalently as
Since g<1 and R;<R,, then surelygR;<R,; therefore,
inasmuch ag,(t) andl,(t) will typically have comparable " d
magnitudes, by virtue of Eq$2.27), we may neglect on the Ryl 1(1) +(2KTR) ™'4(t) - dt [L12(D)+MI5(1)]~0,
right-hand side of Eq(4.2b the secondterm relative to the (4.4
third term. Furthermore, since by E@.6) a; is proportional
JR;, then surelyga;<<a,; so, sinceNy(t) and N,(t) will
typically have comparable magnitudes, we may also neglect
on the right-hand side of Ed4.2b the fourth term relative
to the fifth term. We thus conclude that conditiadsl) al-  These are evidently the circuit equations that we could have
low us to approximate Eq$2.8) by written down immediatelyf we had made the following two

—Rolo(t) + (2K TRy) Y2 (1) — % [LI,(t)]=0. (4.4b
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assumptions(i) the thermal emf's in the two loops are the Under our present restriction®; <R, andg<1, these exact
same as they would be if the loops were isolated, @nd
loop 2 does not see the Faraday emf produced by the curret.7) and (4.8); in particular, we have froneither (| E(oo))
in loop 1. Assumptior(i) is, as we saw in Sec. Il C, strictly formula that

true, but assumptiorii) is an approximation that follows

results are indeed reasonably well approximated by Egs.

from conditions(4.1).

As can be seen from either Eq&l.3b) or (4.4b), 1,(t)
emerges in this approximation as the saaméonomougro-
cess it would be ifM were equal to zero; i.ely(t) is an
Ornstein-Uhlenbeck process with relaxation ti&R, and
diffusion constant RTR,/L?2.

To determind 4(t), we begin by squaring Eq4.33, av-
eraging the result, and then passing to the lidtit~0. Re-
membering thaa?=2kTR , we obtain

S 2oy~ -2 iz + 225 (4 01,0)

kT
+?(Rl+g RZ) (45a

Performing these same operations on the product of Egs.

(4.39 and(4.3b gives

(Ry+
dt<|1(t)|2(t)>~_ <|1(t)|2(t)>+_<| (1))
92kTR,

-z (4.5b

In the limit t—o, the above two equations evidently become

R R
0~ -2 (13)) + 22 (1)1 ()

2kT )
+ 77 (Ritg°Ry),

3 (4.6a

R;+R 2kTR

- BB oy T2 13y - G2,
(4.6b

Now, the approximate isolated charactet gft) implies that
(13(*))~kT/L. Inserting this into Eq(4.6b and then solv-
ing for (1()I,()), we obtain

gkT

<|1(°°)|z(°°)>“—|_(1+—|w-

(4.7

And inserting this result into Eq4.6a and then solving for
(15(=)), we get

4.9

12 kT + g°
o¢] ~ — i —
(=) L 1+R;/R,)’
To check the resultét.7) and(4.8), which we shall make
use of shortly, we note that the exact formu(@sl8 give,
fOI’ L1= L2= L,

gkT

and (11(=)12(=)) =~ r g7

<I2<oo>>=k—T
! L(1-g%

L o, kT )
5 (1)~ 5 (1+¢°). 4.9

To compute the autocovarianeg(t’) of the equilibrium
current in loop 1, as defined in E@2.29, we begin by
replacing in Eqs(4.3) t by t+t' anddt by dt’. Then mul-
tiplying each of the resulting two equations throughlbgt)
and averaging, we get

(D1 +dE)~(1 (D1 (t+1)

Ry
— T (O (t+)dr

I Gyttt

(Ol (t+t +dt))~ (1 (D I(t+t7))

R
=T (LIt t))dt.

Now taking first the limitdt’—0, and then the limit;— —oo,
we obtain, on account of the definitiof®.29 and (2.31),

R,
2(t)~— T 2t 1+ 9% ),

i (4.103

dt’

4 t~— 2 4.10
sz( )~ Tzz( ) (4.10b
The definitiong2.29 and(2.31), along with our result$4.7)
and (4.8), imply that the initial conditions for these two
coupled differential equations are

kT 2
2,(0)=(15(=)1 ()~ *%@) (4113
gkT
22(0)=<|1(°°)|z(°°)>%—|_(1+—w- (4.11b

Equation (4.10h is easily solved forz,(t') subject to the
initial condition (4.11H. When that solution is substituted
into Eq. (4.103, one obtains a closed differential equation
for z,(t") whose solution, for the initial conditio®.113, is
straightforwardly found to be

KT gz(RllRZ) )
N L _ 9 \RaiRe) | Ryt
2t~ [(1 1-(R/RyZ)®
2
9 —(R, /L)Y’
TTTRIR)ZE

(R,>R,,g<1;t'=0). (4.12

In the next section we shall see what this approximate
formula for the autocovariance of the equilibrium current
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17 (t) in loop 1 implies for the spectral density function of

that current. As a check on EG.12, we note that by inte-
grating it over allt’>0, we get

{2

jsc /dl k
Z,(t") tNT

0

B 0%(R1/Ry) L
1-(Ry/Ry)?| Ry

9° L
1-(Ri/Ry)? R,

kKT

+ =—
R’

this, in light of the definition(2.29), is just the single-loop
conductance formulé2.39.

B. Spectral densities of the currents
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1 10 100
frequency v

The approximate spectral density function of the equilib-

rium current in loop 2 under conditior{4.1) is of course the
standard single-loop resuiil.7) with R=R,. To find the

corresponding approximate spectral density function of the
equilibrium current in loop 1, we must substitute our ap-

proximate formula4.12) for z,(t") into Eq.(2.30 and then

perform thet’ integration. This is straightforwardly accom-

plished, and the result can be written in the form

s (o KT 1
(9~ R T 2al iRy
2L 2 2
R1R2 1+(27TLV/R2)

8, (vig)/ S (v;0)

40 60 80
frequency v

0 20

100

FIG. 7. Shown in(a) are logarithmic plots ofS,l(v;g) for

A check on this result can be made by integrating it over allL,=L,=R;=kT=1, R,=1000, andg=0.1, 0.2, 0.5, and also, for

v>0; that yields precisely the estimate dfs(x»)) in Eq.
(4.9.

An inspection of Eqg.(4.13 reveals that the factor in
square brackets there is just the ratio &f (v;9) to

S|1(v;0). For frequencies much less thaR,/27L, which

should be “large” sinceR, is presumed to be large, Eg.
(4.13 implies that thissnhancement ratics given by

S, (v:9)

(2mLg)?
~1+
S, (7;0)

RiR>

¥ (R,>Ry,g<1;v<R,/27L).
(4.14

comparisong=0 (as the dotted curyeln each of theg>0 cases,
the solid curve shows the exact functi¢®.37) and the dashed
curve shows the approximate functi@¢d.13. Shown in(b) are

linear plots of the rati(S|l(v;g)/S|1(v;0) as computed from the
exact formula(solid curvg and the approximate formula@ashed

curve. The parabolic shapes for frequencieR,/27L~159 are

the “quadratic enhancement effect” described by Eq14).

i S, (v;9)

im ————~1+g%R,/R
e S, (150) 97(Re/Ry)

(Ry>R,0<1),

14

(4.153

Evidently, asv increases from 0, the enhancement ratio in-It turns out that an estimate of this ratio that is much more

creases from 1 in guadraticfashion. But Eq(4.13 shows
that this quadratic increase witheventually levels off; spe-

cifically, Eq. (4.13 predicts that the enhancement ratio ap-

proaches the constant-?(R,/R,) as v—.

In Fig. 7(a) we show logarithmic plots o (v;g) versus
v for L=R;=kT=1, R,=1000, andg values of 0.1, 0.2,
and 0.5. For each of theggvalues, we plot as aolid curve
the exactspectral density function formul@.37), and as a
dashedcurve theapproximatespectral density function for-
mula (4.13. For comparison, we have also shown tiwe0

accurate forany gis

im 0%(Ry/Ry)
1-g°

vV—%

S,(v9) 1
S (10)  1I-¢? ( ) (R>Ry).
' (4.15h

which clearlydivergesasg—1. The right side of Eq4.153
gives the high-frequency upshifts of tltashedcurves in
Fig. 7(a), while the right side of Eq(4.15b describes very
closely the high-frequency upshifts of th@xaci solid

spectral density function as a dotted curve. The approximatéurves in Fig. 7). In Fig. 7(b) we plot, against linear axes,

formula is seen to work quite well for smajl For largerg it

the ratioS,l(v;g)/S,l(v;O) for the samay values examined

evidently underestimates the spectral density function at thim Fig. 7(a), again showing the predictions of the exact for-

higher frequencies; in particular, whereas Eg13 predicts,
as just mentioned, a— enhancement ratio of

mula (2.37) as solid curves and the predictions of the ap-
proximate formula(4.13 as dashed curves. The parabolic
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shapes of these curves at frequencies much less than VI (1)=(1+29°R,/R) YA 2k TR YI¥ (1)
R,/27rL~159 illustrates the “quadratic frequency enhance-
ment” effect predicted by formulé.14). (g<1, R, “large” ). (4.20

Comparing this with the formul&2.14) for the true Johnson
emfV,(t) in loop 1, we see that the inductive coupling with
In this section we shall argue that, subject to some imporigop 2 appears to have enhanced the Johnson emf in loop 1
tant caveats, we capproximatelydescribe the effect on the py a factor of(1+2g%R,/R;)"2 The expected effect of this
current in loop 1 of the weakly coupled fast noise in 100p 2enhancement can be inferred by multiplying Ed.19
as a “multiplicative enhancement” of the high-frequency through by dt and examining the resultant formula for
noise amplitude in loop 1. I, (t+dt)—1,(t): one finds thathe very short time fluctua-
We have seen that, under the conditi¢as)), the current  tions in the current are augmented by a factor of
in loop 2 behaves approximately as it would in the absences + 2¢?R,/R;)"2
of loop 1; sol () is approximately an Ornstein-Uhlenbeck Byt the foregoing conclusion must be qualified by several
process with relaxation time,=L/R, and diffusion constant jmportant caveats. First, as was noted below the exact for-
C,=2KTR,/L". Let us suppose that, as a result of satisfyingmy|a(2.37 for S, (»), there isneverany induced increase in
cond|t|0n€|4.1b)t., Ryls S? Iar%e thatt'th? retlaxat![orjr;:mg IS the loop 1 noisel arero frequency. This can be seen quite
very smallon time scales of practical interest. Then, since . P
y P clearly in the present case from the pIots&pI(v) in Fig.

1/2_ 1/2 i T
c;“=(2kT/R,)™% we can invoke the zero-tau limit theo- .

72 =( 2) 7(a), where theg>0 curves all lie on theg=0 curve at

sufficiently low frequencies. It follows that the noise en-

rem for Ornstein-Uhlenbeck procesgé9)] to conclude that

T\ 12 hancement suggested by Eg.20 can applyonly to fluc-

|z(t)%(R— I'3(t) (9<1, R, “large” ), (4.16  tuations with “large” frequencies or “short” periods.

2 Second, although Eq4.19 appearsto have the form of
the Ornstein-Uhlenbeck Langevin equation, which in turn
Yvould imply thatl,(t) is a univariate continuous Markov
process, this is emphaticalhyot the case. The reason is that
the white noise proceds; (t) in Eq.(4.19 is not statistically
independent of 4(t), as it would have to be if,(t) were
Markovian. One can verify this lack of statistical indepen-
R (2kT) 12 dence by directly computing the—o average of the product
— 1 ()~— 1 14(t)+ of 1,(t) andl“’l_*(t). Using Eqs(4.18), (4.10, (4.7), and the
dt L L fact thatl ,(t) is statistically independent of both(t) and
I',(t), one can show that

C. The enhanced Johnson noise

wherel'} (t) is a Gaussian white noise process. Substitutin
this approximation foi ,(t) into the white noise version of
the approximate circuit equatidd.3a [which essentially re-
placesN; (t)(dt)¥2 with T',(t)dt] and recalling the definition
(2.6) of a;, we get

X (GRYTS (1) + RY (1) — gRYT (1), (4.17)

lim (1,(OT*(t gRo KT 1/2
Since the Gaussian white noisB$ (t), I'(t), andfzgt) are t'_TO( 1(OTT (D))~ L(1+R./Ry) | 2(R,+ 2°R,)
all statistically independent of each oteote thatl' (t) is (4.21)
proportional tol,(t), which in turn is statistically indepen- |
dent of bothI"y(t) andI'y(t)], then the linear combination Evidently, this asymptotic covariance will not vanish, as sta-
theorem for normal random variables allows us to write thetistical independency would require, unlegR, were effec-

last factor in Eq(4.17) as tively zero. But if g?R, were effectively zero, then the en-
hancement term in formulad.19 and(4.20 would also be
gRYTS (1) + RYA (1) — gRYT' (1) effectively zero. So Eq(4.19 doesnot imply that 1,(t) is
5 e 1k anykind of univariate continuous Markov process.
=[g°Ry+ R+ (—9)*R 1T (1) The final important caveat concerning the enhanced
=Ri/2(1+Znglel)l/zF’l‘(t), 4.18 Johnson noise formul&4.20 concerns writing that formula

in the algebraically equivalent form

whereI'] (t) is yet another Gaussian white noise process. V¥ (t)=[2kT(R;+2g%R,) 1'% (1)
Substituting Eq(4.18 into Eq. (4.17) gives us
(g<1, R, “large™ ). (4.22
(14 29?R, /Ry YA 2k TR) Y} (1)
L

% [1(t)~— % [4(t)+ This form might seem to suggest that the Johnson noise en-
hancement can be attributed to an enhancement in the resis-
tance of loop 1 fronR; to R, +2g%R,. The fallacy of such
(9<1, R, "large” ). (419  aview can be seen in three different ways: First, the approxi-
mate circuit equatiori4.19 still regardsR; to be the loop
We now observe that Eq4.19 is what we would write  resistance in the usual “dissipative” sense, inasmuch as the
down as the circuit equation for loopiflwe were told thatit  dissipative voltage still appears Bsl 1(t). Second, it is clear
had resistanceR;, self-inductanceL, and anenhanced from the generally valid conductance formula.39 that

Johnson emf Ry still plays the role of the true conductance of loop 1.
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FIG. 8. Trajectories of 1(t) andl,(t), as computed using the
exact simulation algorithm of Sec. IIE, for the case
L;=L,=R;=kT=1, R,=1000, g=10"° (i.e., essentially zero
coupling, 1,(0)=1,(0)=0, andAt=0.001. The dotted horizontal
lines show the theoretically predicted asymptotic one-standard de-
viation envelopes.

1)

And finally, the approximate spectral density functi@nl3
of the equilibrium current in loop tannotbe obtained from
theg=0 formula(1.7) simply by writing the resistance in the : : o
latter formula asR;+2g°R,; in particular, s.l(vzo;g) ‘ . —— . - ; :
should be independent gf

In spite of these caveats, the exact simulation results pre-
sented next will show that the factét+2g2R,/R;)*?in Eq.
(4.20 seems to provide a fairly reasonable estimate of the FIG. 9. Trajectories of,(t), computed exactly as in Fig. 8 and

enhancement induced in thégh-frequencynoise in loop 1 with the same base random number sequence, but now (ajith
under the conditiong4.1). g=0.1,(b) g=0.2, and(c) g=0.5. The companiofy(t) trajectories
for these cases all look approximately the same as the one in Fig. 8.

Subject to qualifications discussed in Sec. IV C, the high-frequency

“fuzzing” of these trajectories is well described by the approxi-
We show in Figs. 8 and 9 the results of some numericamate “thickening” factor(1+2g2R,/R;)"

simulations of the loop currents for the parameter values

L=kT=1, R,=1, R,=1000, and several differegtvalues. — oximate Johnson noise enhancement factor in formula
All of these simulations were carried out using tbeact (4.20:

D. Simulation results

simulation algorithm described in Sec. Il E. 2 172
Figure 8 showsl(f) and I() for the effectively un- g (1+29°Ro/Ry)

coupled casg@=10 " (cf. Fig. 2; here the two currents are 0 1

essentially autonomous Ornstein-Uhlenbeck processes with 0.1 4.6

the same asymptotic variande¥/L but very different relax- 0.2 9.0

ation timesL/R; andL/R,. Figures %a), 9(b), and 9c) show

[,(t) for three additional simulation runs, which were made

using the same time stept=0.001 and the same uniform

random number seed, but differemtvalues of 0.1, 0.2, and According to the spectral density function plots in Figa)7

0.5. The companion trajectories bf(t) are not shown be- not much inductive noise is introduced at frequencies below

cause they look approximately the same as the one in Fig. 8. And indeed, we see in tHg(t) trajectories in Fig. 9 that

as we should expect from the approximate circuit equatiolemporal fluctuations inl(t) with periods greater than

(4.3b. [The asymptotic one-standard deviation envelopes ofoughly 1/2 suffer little change with increasiggBut we can

both I,(t) and I,(t) are actually observed in these exactga|so see that, agincreases, the(t) trajectory gets increas-

simulations to be about 15% larger a@t=0.5 than at ingly “fuzzed” over shorter time intervals. And we observe

g=10"° in accordance with the predictions of the exact for-that the consequent “thickening” of the trajectories is well

mulas(2.18.] described by the above values of the enhancement fac-
Let us examine thé,(t) trajectories in Figs. 8 and 9 in tor: Theg=0.1 trajectory in Fig. @) is roughly four times

the light of the corresponding, (v) curves in Fig. 7a) and  fatter than they~0 trajectory ofl,(t) in Fig. 8; theg=0.2

the following values(for R;=1 and R,=1000 of the ap- trajectory in Fig. 9b) is fatter again by a factor of roughly 2;

0.5 22.4
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and theg=0.5 trajectory in Fig. &) is fatter again by a mains white at frequencies beldw/27(L+ M), and 1f? at
factor of roughly 2(even though thigy value is no longer frequencies abov&/27(L—M). In between the two knee
<1). frequencies a “1f-type” noise behavior is briefly exhibited.
A very slight but wholly unexpectesluppressiorof the loop
noise was found to occur at low frequencisge Fig. 1a)
o ] and Eq. (3.63]. The sum and difference currents

We have used bivariate continuous Markov procesg  (t)=|,(t)=1,(t) were found to mimic the currents in two
theory to analyze the behavior of two wire loops of resis-yncoupled loops with resistance®, self-inductances
tancesR; andR,, self-indgctanceﬁ1 andL,, absolute lt/em- (L+=M), and temperaturesT2 As g—1, | . (t) becomes the
peratureT, and mutual inductancé! (=M <[LiL,]1").  cyrrent in a loop of resistanciR and self-inductance. at
Our major assumptions were that classical s;anspcal_th.ermqemperature-r, while 1_(t) approaches (KT/R)Y? times
dynamics applies, and that the thermal noise in 1006  Gaussian white noise. The increasingly wild, increasingly
=1,2) can be described by a “thermal emf” of the form anticorrelated behavior df,(t) andl,(t) with increasingg
—Rili(t) +Vi(t), wherel;(t) is the current in loopi and s shown clearly in the exact simulation plots of Figs. 2—6.
Vi(t) is some zero-mean, temporally uncorrelated random |, the weakly coupled highly dissimilar loop case
process that is independentiq{t) andl,(t). (Ri<R,, L;=L,=L, andg=M/L<1), we found that ,(t)

We found thatl 1(t) and I,(t) must be normal random s not substantially affected by the presence of loop 1. This
variables, whose means, variances, and covariance can pRcumstance allowed an approximate analysis to be made,
computed by solving the two matrix differential equationsyhich revealed that the spectral density function gt) is
(2.12 and(2.13. The Johnson emf¥;(t) were shown to be  enhanced, for frequencies<R,/27L, by the approximate
unaffected by the inductive coupling between the l00ps, S@actor (1+ a1?), where a=(2mLg)?/R,R,. This quadratic
the familiar single-loop fluctuation-dissipation and Nyquist noise enhancement efféstillustrated in Fig. 7). Also im-
formulas (2.14 and (2.15 remain valid. The single-loop pjied, and neatly verified by the exact simulations shown in
conductance formulé2.39 was also shown to hold indepen- Fig. 9, is an enhancement by a factor(df-2g°R,/R;)"? of
dently of M, thus implying that the noise introduced into the high-frequency amplitude noise in(t). This enhance-
each loop by the inductive coupling does not augment thenent can be characterized roughly as an enhancement in the

effective resistances of the loops. An exact formula for thejohnson noise in loop 1, provided it is understood that there

was derived in Eq(2.37), and an exact algorithm for numeri-
cally simulating the loop currents was presented in Sec. Il E.
Two special cases were examined in detail. Initlenti-
cal loop case (R;=R,=R, L;=L,=L, g=M/L), the
spectral density function of the loop current was found to be The author thanks Carol Gillespie for computing and
given by formula(3.5. As is shown in Fig. 1, theM=0  graphing all numerical data reported in this paper, and for
“knee” at frequencyR/27L, below which that function has making several helpful observations. This work was spon-
slope 0 and above which it has slop®, splits wherM >0  sored by the Inhouse Laboratory Independent Research Pro-
into two knees at frequencid?/27(L=M). The noise re- gram of the Office of Naval Research.

V. SUMMARY AND CONCLUSIONS
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